CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Observation of Charge Density Wave in Layered Hexagonal Cu$_{1.89}$Te Single Crystal |
Wenshuai Gao1†, Zheng Chen2,4†, Wensen Wei2, Chao Yan3, Shasha Wang2,4, Jin Tang2, Ranran Zhang2, Lixun Cheng1, Pengfei Nan1, Jie Wang2,4, Yuyan Han2, Chuanying Xi2, Binghui Ge1, Lin He3, Haifeng Du1,2, Wei Ning2, Xiangde Zhu2*, and Mingliang Tian2,5* |
1Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China 2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China 3Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China 4Department of physics, University of Science and Technology of China, Hefei 230026, China 5School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Wenshuai Gao, Zheng Chen, Wensen Wei et al 2023 Chin. Phys. Lett. 40 017101 |
|
|
Abstract We report comprehensive transport, electron microscopy and Raman spectroscopy studies on transition-metal chalcogenides Cu$_{1.89}$Te single crystals. The metallic Cu$_{1.89}$Te displays successive metal-semiconductor transitions at low temperatures and almost ideal linear MR when magnetic field up to 33 T. Through the electron diffraction patterns, the stable room-temperature phase is identified as a $3 \times 3\times 2$ modulated superstructure based on the Nowotny hexagonal structure. The superlattice spots of transmission electron microscopy and scanning tunneling microscopy clearly show the structural transitions from the room-temperature commensurate I phase, named as C-I phase, to the low temperature commensurate II (C-II) phase. All the results can be understood in terms of charge density wave (CDW) instability, yielding intuitive evidences for the CDW formations in Cu$_{1.89}$Te. The additional Raman modes below room temperature further reveal that the zone-folded phonon modes may play an important role on the CDW transitions. Our research sheds light on the novel electron features of Cu$_{1.89}$Te at low temperature, and may provide potential applications for future nano-devices.
|
|
Received: 02 October 2022
Published: 21 December 2022
|
|
|
|
|
|
[1] | Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808 |
[2] | Liu H L, Shi X, Xu F F, Zhang L F, Zhang W Q, Chen L D, Li Q, Uher C, Day T, and Snyder G J 2012 Nat. Mater. 11 422 |
[3] | Nguyen M C, Choi J, Zhao X, Wang C Z, Zhang Z, and Ho K M 2013 Phys. Rev. Lett. 111 165502 |
[4] | Nethravathi C, Rajamathi C R, Rajamathi M, Maki R, Mori T, Golberg D, and Bando Y 2014 J. Mater. Chem. A 2 985 |
[5] | Kikuchi H, Iyetomi H, and Hasegawa A 1997 J. Phys.: Condens.: Matter 9 6031 |
[6] | Byeon D, Sobota R, Kévin D, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, and Takeuchi T 2019 Nat. Commun. 10 72 |
[7] | He Y, Zhang T, Shi X, Wei S, and Chen L 2015 NPG Asia Mater. 7 e210 |
[8] | Kikuchi H, Iyetomi H, and Hasegawa A 1998 J. Phys.: Condens. Matter 10 11439 |
[9] | Vouroutzis N and Manolikas C 1989 Phys. Status Solidi A 111 491 |
[10] | Vouroutzis N, Frangis N, and Manolikaset C 2005 Phys. Status Solidi A 202 271 |
[11] | Asadov Y G, Rustamova L V, Gasimov G B, Jafarov K M, and Babajev A G 1992 Phase Transit. 38 247 |
[12] | Nowotny H 1946 Int. J. Mater. Res. 37 40 |
[13] | Baranova R V, Avilov A S, and Pinsker Z G 1973 Kristallografiya 18 1169 |
[14] | Matar S, Weihrich R, Kurowski D, and Pfitzner A 2004 Solid State Sci. 6 15 |
[15] | Yu L, Luo K, Chen S, and Duan C G 2015 CrystE NgComm. 17 2878 |
[16] | Sirusi A A, Page A, Uher C, and Ross Jr J H 2017 J. Phys. Chem. Solids 106 52 |
[17] | Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X, and Gao H J 2020 Chin. Phys. B 29 018104 |
[18] | Tong Y F, Bouaziz M, Zhang W, Obeid B, Loncle A, Oughaddou H, Enriquez H, Chaouchi K, Esaulov V, Chen Z S, Xiong H Q, Cheng Y C, and Bendounan A 2020 2D Mater. 7 035010 |
[19] | Liu S, Xia W, Huang K, Pei D, Deng T, Liang A J, Jiang J, Yang H F, Zhang J, Zheng H J, Chen Y J, Yang L X, Guo Y F, Wang M X, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 115127 |
[20] | Feng J Q, Gao H Y, Li T, Tan X, Xu P, Li M L, He L, and Ma D L 2021 ACS Nano 15 3415 |
[21] | Zhang X, Gu Q Q, Sun H, and Luo T 2020 Phys. Rev. B 102 035125 |
[22] | Zhang Y G, Sa B H, Zhou J, and Sun Z M 2014 Comput. Mater. Sci. 81 163 |
[23] | Sirusi A A, Ballikaya B, Chen J, Uher C, and Ross J H 2016 J. Phys. Chem. C 120 14549 |
[24] | Ma Y D, Kou L Z, Dai Y, and Heine T 2016 Phys. Rev. B 93 235451 |
[25] | Zhao X X and Mi Y M 2021 Phys. Chem. Chem. Phys. 23 3116 |
[26] | Sirusi A A, Page A, Steinke L, Aronson M C, Uher C, and Ross J H 2018 AIP Adv. 8 055135 |
[27] | Zhang K, Liu X, Zhang H, Deng K, Yan M, Yao W, Zheng M, Schwier E F, Shimada K, Denlinger J D, Wu Y, Duan W, and Zhou S 2018 Phys. Rev. Lett. 121 206402 |
[28] | Kuo C N, Huang R Y, Kuo Y K, and Lue C S 2020 Phys. Rev. B 102 155137 |
[29] | Sinchenko A A, Monceau P, and Crozes T 2012 Phys. Rev. Lett. 108 046402 |
[30] | Mutka H, Zuppiroli L, M, and Bourgoin J C 1981 Phys. Rev. B 23 10 |
[31] | Chen H, Li Z, Guo L, and Chen X 2017 Europhys. Lett. 117 27009 |
[32] | Kolincio K K, Roman M, and Klimczuk T 2019 Phys. Rev. B 99 205127 |
[33] | Tian L, Quinn G, Mazhar N A, Minhao L, Cava R J, and Ong N P 2015 Nat. Mater. 14 280 |
[34] | Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, and Yan B 2015 Nat. Phys. 11 645 |
[35] | Zhang X, Luo T C, and Hu X Y 2019 Chin. Phys. Lett. 36 057402 |
[36] | Zhao Y F, Liu H W, and Zhang C L 2015 Phys. Rev. X 5 031037 |
[37] | Wang J and DaSilva A M 2011 Phys. Rev. B 83 245438 |
[38] | Abrikosov A A 2000 Europhys. Lett. 49 789 |
[39] | Sinchenko A A, Grigoriev P D, Lejay P, and Monceau P 2017 Phys. Rev. B 96 245129 |
[40] | Frolov A V, Orlov A P, Grigoriev P D, Zverev V N, Sinchenko A A, and Monceau P 2018 JETP Lett. 107 488 |
[41] | Feng Y J, Wang Y S, Silevitch D M, Yan J Q, and Rosenbaum T F 2019 Proc. Natl. Acad. Sci. USA 116 11201 |
[42] | Peierls R E 1930 Ann. Phys. (Leipzig) 396 121 |
[43] | Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138 |
[44] | Gor'kov L P 2012 Phys. Rev. B 85 165142 |
[45] | Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami P, Said A H, and Reznik D 2011 Phys. Rev. Lett. 107 107403 |
[46] | Eiter H M, Lavagnini M, Hackl R, Nowadnick E A, Kemper A F, Devereaux T P, Chu J H, Analytis J G, Fisher I R, and Degiorgi L 2013 Proc. Natl. Acad. Sci. USA 110 64 |
[47] | Gleason S L, Gim Y, Byrum T, Kogar A, Abbamonte P, Fradkin E, MacDougall G J, Van Harlingen D J, Zhu X, Petrovic C, and Cooper S L 2015 Phys. Rev. B 91 155124 |
[48] | Tan P H 2012 Nat. Mater. 11 294 |
[49] | Puretzky A A, Liang L, Li X, Xiao K, Wang K, Masoud M S, Basile L, Idrobo J C, Sumpter B G, Meunier V, and Geohegan D B 2015 ACS Nano 9 6 6333 |
[50] | Snow C S, Karpus J F, Chiang T C, Kidd T E, and Cooper S L 2003 Phys. Rev. Lett. 91 136402 |
[51] | Rui H, Okamoto J, Ye Z, Ye G, Anderson H, Dai X, Wu X, Hu J, Liu Y, Lu W, Sun Y, Pasupathy A N, and Tsen A W 2016 Phys. Rev. B 94 201108(R) |
[52] | Measson M A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, and Sacuto A 2014 Phys. Rev. B 89 060503(R) |
[53] | Zhu X D, Ning W, Li L, Ling L, Zhang R, Zhang J, Wang K L, Pi L, Ma Y, Du H, Tian M, Sun Y, Petrovic C, and Zhang Y 2016 Sci. Rep. 6 26974 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|