Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 014201    DOI: 10.1088/0256-307X/40/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Flat Top Optical Frequency Combs Based on a Single-Core Quantum Cascade Laser at Wavelength of $\sim$ 8.7 μm
Yu Ma1,2, Wei-Jiang Li1,2 Yun-Fei, Xu1,2, Jun-Qi Liu1,2*, Ning Zhuo1,2*, Ke Yang1,2, Jin-Chuan Zhang1,2, Shen-Qiang Zhai1,2, Shu-Man Liu1,2, Li-Jun Wang1,2, and Feng-Qi Liu1,2
1Key Laboratory of Semiconductor Materials Science, and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Yu Ma, Wei-Jiang Li Yun-Fei, Xu et al  2023 Chin. Phys. Lett. 40 014201
Download: PDF(2466KB)   PDF(mobile)(2466KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present optical frequency combs with a spectral emission of 48 cm$^{-1}$ and an output power of 420 mW based on a single-core quantum cascade laser at $\lambda \sim 8.7$ µm. A flat top spectrum sustains up to 130 comb modes delivering $\sim$ 3.2 mW of optical power per mode, making it a valuable tool for dual comb spectroscopy. The homogeneous gain medium, relying on a slightly diagonal bound-to-continuum structure, promises to provide a broad and stable gain for comb operating. Remarkably, the dispersion of this device is measured within 300 fs$^{2}$/mm to ensure stable comb operation over 90% of the total current range. The comb is observed with a narrow beatnote linewidth around 2 kHz and has weak dependence on the applied current for stable comb operation.
Received: 12 October 2022      Published: 26 December 2022
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  73.63.Hs (Quantum wells)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/014201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Ma
Wei-Jiang Li Yun-Fei
Xu
Jun-Qi Liu
Ning Zhuo
Ke Yang
Jin-Chuan Zhang
Shen-Qiang Zhai
Shu-Man Liu
Li-Jun Wang
and Feng-Qi Liu
[1] Hugi A, Villares G, Blaser S, Liu H C, and Faist J 2012 Nature 492 229
[2]Soibel A, Capasso F, Gmachl C, Peabody M L, Sergent A M, Paiella R, Hwang H Y, Sivco D L, Cho A Y, Liu H C, Jirauschek C, and Kartner F X 2004 IEEE J. Quantum Electron. 40 844
[3]Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, and Beck M 2016 Nanophotonics 5 272
[4] Villares G, Hugi A, Blaser S, and Faist J 2014 Nat. Commun. 5 5192
[5] Hillbrand J, Andrews A M, Detz H, Strasser G, and Schwarz B 2019 Nat. Photon. 13 101
[6] Liu J Q, Chen J Y, Liu F Q, Li L, Wang L J, and Wang Z G 2010 Chin. Phys. Lett. 27 104205
[7] Wang T, Liu J Q, Chen J Y, Liu Y H, Liu F Q, Wang L J, and Wang Z G 2013 Chin. Phys. Lett. 30 064201
[8] Fei T, Zhai S, Zhang J, Zhuo N, Liu J, Wang L, Liu S, Jia Z, Li K, Sun Y, Guo K, Liu F, and Wang Z 2021 J. Semicond. 42 112301
[9] Beiser M, Opačak N, Hillbrand J, Strasser G, and Schwarz B 2021 Opt. Lett. 46 3416
[10] Lu Q Y, Razeghi M, Slivken S, Bandyopadhyay N, Bai Y, Zhou W J, Chen M, Heydari D, Haddadi A, McClintock R, Amanti M, and Sirtori C 2015 Appl. Phys. Lett. 106 051105
[11] Chang L, Liu S, and Bowers J E 2022 Nat. Photon. 16 95
[12] Consolino L, Nafa M, De Regis M, Cappelli F, Garrasi K, Mezzapesa F P, Li L, Davies A G, Linfield E H, Vitiello M S, Bartalini S, and De Natale P 2020 Commun. Phys. 3 69
[13] Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, and Zeng H 2020 ACS Photon. 7 49
[14] Jerez B, Martín-Mateos P, Prior E, de Dios C, and Acedo P 2016 Opt. Express 24 14986
[15] Garrasi K, Mezzapesa F P, Salemi L, Li L, Consolino L, Bartalini S, De Natale P, Davies A G, Linfield E H, and Vitiello M S 2019 ACS Photon. 6 73
[16]Razeghi M, Lu Q, Wu D, and Slivken S 2018 Proc. SPIE 10756 107560I
[17] Villares G, Riedi S, Wolf J, Kazakov D, Süess M J, Jouy P, Beck M, and Faist J 2016 Optica 3 252
[18] Li L H, Garrasi K, Kundu I, Han Y J, Salih M, Vitiello M S, Davies A G, and Linfield E H 2018 Electron. Lett. 54 1229
[19] Jouy P, Wolf J M, Bidaux Y, Allmendinger P, Mangold M, Beck M, and Faist J 2017 Appl. Phys. Lett. 111 141102
[20] Wang R J, Täschler P, Kapsalidis F, Shahmohammadi M, Beck M, and Faist J 2020 Opt. Lett. 45 6462
[21] Bidaux Y, Kapsalidis F, Jouy P, Beck M, and Faist J 2018 Laser Photon. Rev. 12 1700323
[22] Corrias N, Gabbrielli T, De Natale P, Consolino L, and Cappelli F 2022 Opt. Express 30 10217
[23] Hofstetter D and Faist J 1999 IEEE Photon. Technol. Lett. 11 1372
Related articles from Frontiers Journals
[1] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser *[J]. Chin. Phys. Lett., 0, (): 014201
[2] Dai-Bing Zhou, Song Liang, Yi-Ming He, Yun-Long Liu, Wu Zhao, Dan Lu, Ling-Juan Zhao, Wei Wang. A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser[J]. Chin. Phys. Lett., 2020, 37(6): 014201
[3] Yi-Chen Xu, Zhi-Min Wang, Feng-Feng Zhang, Rui-Nan Yang, Xu-Chao Liu, Yue Song, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. High-Efficiency Spectral-Beam-Combined 930nm Diode Laser Source[J]. Chin. Phys. Lett., 2020, 37(5): 014201
[4] Rui Guo, Ye-Wen Jiang, Ting-Hao Liu, Qiang Liu, Ma-Li Gong. Pulse Characteristics of Cavityless Solid-State Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014201
[5] Ting Fu, Yu-Fei Wang, Xue-You Wang, Xu-Yan Zhou, Wan-Hua Zheng. Mode Control of Quasi-PT Symmetry in Laterally Multi-Mode Double Ridge Semiconductor Laser[J]. Chin. Phys. Lett., 2020, 37(4): 014201
[6] Yan-Ping Li, Li-Jun Yuan, Li Tao, Wei-Xi Chen, Bao-Jun Wang, Jiao-Qing Pan. III–V/Si Hybrid Laser Array with DBR on Si Waveguide[J]. Chin. Phys. Lett., 2019, 36(10): 014201
[7] Zhong-Hao Chen, Hong-Wei Qu, Xiao-Long Ma, Ai-Yi Qi, Xu-Yan Zhou, Yu-Fei Wang, Wan-Hua Zheng. High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle[J]. Chin. Phys. Lett., 2019, 36(8): 014201
[8] Ya-Jie Li, Jia-Qi Wang, Lu Guo, Guang-Can Chen, Zhao-Song Li, Hong-Yan Yu, Xu-Liang Zhou, Huo-Lei Wang, Wei-Xi Chen, Jiao-Qing Pan. Electrically and Optically Bistable Operation in an Integration of a 1310nm DFB Laser and a Tunneling Diode[J]. Chin. Phys. Lett., 2018, 35(4): 014201
[9] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 014201
[10] Qiang Gao, Wu-Bin Weng, Bo Li, Zhong-Shan Li. Quantitative and Spatially Resolved Measurement of Atomic Potassium in Combustion Using Diode Laser[J]. Chin. Phys. Lett., 2018, 35(2): 014201
[11] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 014201
[12] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 014201
[13] Si-Hang Wei, Xiang-Jun Shang, Ben Ma, Ze-Sheng Chen, Yong-Ping Liao, Hai-Qiao Ni, Zhi-Chuan Niu. Intracavity Spontaneous Parametric Down-Conversion in Bragg Reflection Waveguide Edge Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(7): 014201
[14] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 014201
[15] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 014201
Viewed
Full text


Abstract