Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 010301    DOI: 10.1088/0256-307X/40/1/010301
GENERAL |
Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor
Changhao Zhao1,2, Yongcheng He1,2, Xiao Geng1,2, Kaiyong He1,2, Genting Dai1,2, Jianshe Liu1,2, and Wei Chen1,2,3*
1Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China
2Beijing National Research Center for Information Science and Technology, Beijing 100084, China
3Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China
Cite this article:   
Changhao Zhao, Yongcheng He, Xiao Geng et al  2023 Chin. Phys. Lett. 40 010301
Download: PDF(5360KB)   PDF(mobile)(5946KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Resonators in circuit quantum electrodynamics systems naturally carry multiple modes, which may have non-negligible influence on qubit parameters and device performance. While new theories and techniques are under investigation to deal with the multi-mode effects in circuit quantum electrodynamics systems, researchers have proposed novel engineering designs featuring multi-mode resonators to achieve enhanced functionalities of superconducting quantum processors. Here, we propose multi-mode bus coupling architecture, in which superconducting qubits are coupled to multiple bus resonators to gain larger coupling strength. Applications of multi-mode bus couplers can be helpful for improving iSWAP gate fidelity and gate speed beyond the limit of single-mode scenario. The proposed multi-mode bus coupling architecture is compatible with a scalable variation of the traditional bus coupling architecture. It opens up new possibilities for realization of scalable superconducting quantum computation with circuit quantum electrodynamics systems.
Received: 22 July 2022      Published: 24 December 2022
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/010301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Changhao Zhao
Yongcheng He
Xiao Geng
Kaiyong He
Genting Dai
Jianshe Liu
and Wei Chen
[1] Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[2] Wallraff A, Schuster D, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin S M, and Schoelkopf R J 2004 Nature 431 162
[3] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, and Martinis J M 2014 Nature 508 500
[4] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov P V, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J R, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J C, Quintana C, Rieffel E G, Roushan P, Rubin N C, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Neven H, and Martinis J M 2019 Nature 574 505
[5] Wu Y L, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, and Pan J W 2021 Phys. Rev. Lett. 127 180501
[6] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X, and Pan J W 2021 Science 372 948
[7] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Nature 449 443
[8] Sillanpää M A, Park J I, and Simmonds R W 2007 Nature 449 438
[9] Filipp S, Göppl M, Fink J M, Baur M, Bianchetti R, Steffen L, and Wallraff A 2011 Phys. Rev. A 83 063827
[10] Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M, Megrant A, O'Malley P, Sank D, Vainsencher A, Wenner J, White T, Yin Y, Cleland A N, and Martinis J M 2012 Nat. Phys. 8 719
[11] Takita M, Cross A W, Córcoles A D, Chow J M, and Gambetta J M 2017 Phys. Rev. Lett. 119 180501
[12] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S, and Pan J W 2017 Phys. Rev. Lett. 119 180511
[13] Cai H, Liu Q C, Zhao C H, Zhang Y S, Liu J S, and Chen W 2018 Chin. Phys. B 27 084207
[14] Song C, Xu K, Li H, Zhang Y R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J, Feng H, Fan H, Zheng D, Wang D W, Wang H, and Zhu S Y 2019 Science 365 574
[15] Li H K, Li K M, Dong H, Guo Q J, Liu W X, Wang Z, Wang H H, and Zheng D N 2019 Chin. Phys. B 28 080305
[16] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, and Martinis J M 2014 Phys. Rev. Lett. 113 220502
[17] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[18] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F, and Yu D 2020 Phys. Rev. Lett. 125 240503
[19] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, and Fan H 2018 Phys. Rev. Lett. 120 050507
[20] Zhu Q L, Cao S R, Chen F S, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Wu Y, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Lu C Y, Peng C Z, Zhu X, and Pan J W 2022 Sci. Bull. 67 240
[21] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M, and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
[22] Bourassa J, Beaudoin F, Gambetta J M, and Blais A 2012 Phys. Rev. A 86 013814
[23] Nigg S E, Paik H, Vlastakis B, Kirchmair G, Shankar S, Frunzio L, Devoret M H, Schoelkopf R J, and Girvin S M 2012 Phys. Rev. Lett. 108 240502
[24] Solgun F, Abraham D W, and DiVincenzo D P 2014 Phys. Rev. B 90 134504
[25] Gely M F, Parra-Rodriguez A, Bothner D, Blanter Y M, Bosman S J, Solano E, and Steele G A 2017 Phys. Rev. B 95 245115
[26] Parra-Rodriguez A, Rico E, Solano E, and Egusquiza I L 2018 Quantum Sci. Technol. 3 024012
[27] Minev Z K, Leghtas Z, Mundhada S O, Christakis L, Pop I M, and Devoret M H 2021 npj Quantum Inf. 7 131
[28] Leek P J, Baur M, Fink J M, Bianchetti R, Steffen L, Filipp S, and Wallraff A 2010 Phys. Rev. Lett. 104 100504
[29] Sundaresan N M, Liu Y, Sadri D, Szőcs L J, Underwood D L, Malekakhlagh M, Türeci H E, and Houck A A 2015 Phys. Rev. X 5 021035
[30] Bosman S J, Gely M F, Singh V, Bruno A, Bothner D, and Steele G A 2017 npj Quantum Inf. 3 46
[31] Wang H, Zhuravel A P, Indrajeet S, Taketani B G, Hutchings M D, Hao Y, Rouxinol F, Wilhelm F K, LaHaye M D, Ustinov A V, and Plourde B L T 2019 Phys. Rev. Appl. 11 054062
[32] Chakram S, Oriani A E, Naik R K, Dixit A V, He K, Agrawal A, Kwon H, and Schuster D I 2021 Phys. Rev. Lett. 127 107701
[33] McKay D C, Naik R, Reinhold P, Bishop L S, and Schuster D I 2015 Phys. Rev. Lett. 114 080501
[34] Naik R K, Leung N, Chakram S, Groszkowski P, Lu Y, Earnest N, McKay D C, Koch J, and Schuster D I 2017 Nat. Commun. 8 1904
[35] Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[36] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[37] Johansson J R, Nation P D, and Nori F 2012 Comput. Phys. Commun. 183 1760
[38] Johansson J R, Nation P D, and Nori F 2013 Comput. Phys. Commun. 184 1234
[39]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[40] Koch J, Yu T M, Gambetta J M, Houck A, Schuster D, Majer J, Blais A, Devoret M H, Girvin S M, and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[41]Numerical verification of this extrapolation is given by Fig. S1 in the Supplementary Material.
[42] Fowler A G, Mariantoni M, Martinis J M, and Cleland A N 2012 Phys. Rev. A 86 032324
[43] Nielsen M A 2002 Phys. Lett. A 303 249
[44] Korotkov A N 2013 arXiv:1309.6405 [quant-ph]
[45] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, and Sun L 2020 Phys. Rev. Appl. 14 024070
[46]Purcell E M 1995 Spontaneous Emission Probabilities at Radio Frequencies, in Confined Electrons and Photons: New Physics and Applications, edited by Burstein E and Weisbuch C (Boston, MA: Springer) NATO ASI Series vol 340 p 839
[47] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L, and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110
[48]See Eq. (S1) in the Supplementary Material.
[49] Kwon S, Tomonaga A, Lakshmi B G, Devitt S J, and Tsai J S 2021 J. Appl. Phys. 129 041102
[50]See Sec. S3 in the Supplementary Material.
[51] Kjaergaard M, Schwartz M E, Braumüller J, Krantz P, Wang J I J, Gustavsson S, and Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369
[52]See Sec. S4 in the Supplementary Material.
[53] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, and Schoelkopf R J 2009 Nature 460 240
[54] Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H, and Yu Y 2020 Phys. Rev. Lett. 125 200503
[55] Zhao P, Lan D, Xu P, Xue G, Blank M, Tan X, Yu H, and Yu Y 2021 Phys. Rev. Appl. 16 024037
[56] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, and Glaser S J 2005 J. Magn. Reson. 172 296
[57] Müller M M, Reich D M, Murphy M, Yuan H, Vala J, Whaley K B, Calarco T, and Koch C P 2011 Phys. Rev. A 84 042315
[58] Rowland B and Jones J A 2012 Philos. Trans. R. Soc. A 370 4636
[59] Riviello G, Tibbetts K M, Brif C, Long R, Wu R B, Ho T S, and Rabitz H 2015 Phys. Rev. A 91 043401
[60] Li J, Yang X, Peng X, and Sun C P 2017 Phys. Rev. Lett. 118 150503
[61] Abdelhafez M, Baker B, Gyenis A, Mundada P, Houck A A, Schuster D, and Koch J 2020 Phys. Rev. A 101 022321
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 010301
[2] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 010301
[3] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 010301
[4] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 010301
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 010301
[6] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 010301
[7] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 010301
[8] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 010301
[9] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 010301
[10] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 010301
[11] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 010301
[12] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 010301
[13] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 010301
[14] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 010301
[15] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 010301
Viewed
Full text


Abstract