CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magneto-Elastic Coupling in a Sinusoidal Modulated Magnet Cr$_2$GaN |
Hui-Can Mao1,2, Yu-Feng Li3, Qing-Yong Ren4,5, Mi-Hai Chu6, Helen E. Maynard-Casely7, Franz Demmel8, Devashibhai Adroja8, Hai-Hu Wen3, Yin-Guo Xiao6*, and Hui-Qian Luo1,9* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 5Spallation Neutron Source Science Center, Dongguan 523803, China 6School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, China 7Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights NSW-2232, Australia 8ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX, United Kingdom 9Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Hui-Can Mao, Yu-Feng Li, Qing-Yong Ren et al 2022 Chin. Phys. Lett. 39 097501 |
|
|
Abstract We use neutron powder diffraction to investigate the magnetic and crystalline structure of Cr$_2$GaN. A magnetic phase transition is identified at $T \approx 170$ K, whereas no trace of structural transition is observed down to 6 K. Combining Rietveld refinement with irreducible representations, the spin configuration of Cr ions in Cr$_2$GaN is depicted as an incommensurate sinusoidal modulated structure characterized by a propagating vector $k=(0.365, 0.365, 0)$. Upon warming up to the paramagnetic state, the magnetic order parameter closely resembles to the temperature dependence of $c$-axis lattice parameter, suggesting strong magneto-elastic coupling in this compound. Therefore, Cr$_2$GaN provides a potential platform for exploration of magnetically tuned properties such as magnetoelectric, magnetostrictive and magnetocaloric effects, as well as their applications.
|
|
Received: 28 June 2022
Published: 12 August 2022
|
|
|
|
|
|
[1] | Barsoum M W 2000 Prog. Solid State Chem. 28 201 |
[2] | Eklund P et al. 2010 Thin Solid Films 518 1851 |
[3] | Sun Z M 2011 Int. Mater. Rev. 56 143 |
[4] | Barsoum M W et al. 2001 Am. Sci. 89 334 |
[5] | Barsoum M W et al. 1996 J. Am. Ceram. Soc. 79 1953 |
[6] | Ingason A S, Dahlqvist M, and Rosen J 2016 J. Phys.: Condens. Matter 28 433003 |
[7] | Novoselova I P et al. 2018 Sci. Rep. 8 2637 |
[8] | Dahlqvist M et al. 2016 Phys. Rev. B 93 014410 |
[9] | Boucher R, Berger O, and Leyens C 2016 Surf. Eng. 32 172 |
[10] | Salikhov R et al. 2015 Mater. Res. Lett. 3 156 |
[11] | Liu Z, Waki T, Tabata Y, and Nakamura H 2014 Phys. Rev. B 89 054435 |
[12] | Li Y F, Liu J Z, Liu W H, Zhu X Y, and Wen H H 2015 Philos. Mag. 95 2831 |
[13] | Liu Z, Waki T, Tabata Y, Yuge K, Nakamura H, and Watanabe I 2013 Phys. Rev. B 88 134401 |
[14] | Rietveld H M 1969 J. Appl. Crystallogr. 2 65 |
[15] | Rodríguez-Carvajal J 1993 Phys. B: Condens. Matter 192 55 |
[16] | Wills A S 2000 Physica B 276–278 680 |
[17] | Ren Q Y, Hutchison W D, Wang J L, Studer A J, and Campbell S J 2018 Chem. Mater. 30 1324 |
[18] | Akito S et al. 2018 Nat. Phys. 14 1119 |
[19] | Manna K et al. 2018 Phys. Rev. X 8 041045 |
[20] | Guin S N et al. 2019 NPG Asia Mater. 11 16 |
[21] | Vilanova V E, Stryganyuk G, Schneider H, Felser C, and Jakob G 2011 Appl. Phys. Lett. 99 132509 |
[22] | Li P G et al. 2020 Nat. Commun. 11 3476 |
[23] | Chang G Q et al. 2016 Sci. Rep. 6 38839 |
[24] | Wang Z J et al. 2016 Phys. Rev. Lett. 117 236401 |
[25] | Liu C et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 217062 |
[26] | Liu C et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 257511 |
[27] | Itoh S et al. 2016 Nat. Commun. 7 11788 |
[28] | Jenni K et al. 2019 Phys. Rev. Lett. 123 017202 |
[29] | Xu Y F et al. 2020 Nature 586 702 |
[30] | Wang P Y, Ge J, Li J H, Liu Y Z, Xu Y, and Wang J 2021 Innovation 2 100098 |
[31] | Bernevig B A, Felser C, and Beidenkopf H 2022 Nature 603 41 |
[32] | Wang H et al. 2020 Sci. Chin. Phys. Mech. & Astron. 63 287411 |
[33] | Xie X C 2021 Sci. Chin. Phys. Mech. & Astron. 64 217061 |
[34] | Yan B H 2021 Sci. Chin. Phys. Mech. & Astron. 64 217063 |
[35] | Cai Z W et al. 2020 Phys. Rev. B 104 L020402 |
[36] | Li J, Feng J S, Wang P S, Kan E J, and Xiang H J 2021 Sci. Chin. Phys. Mech. & Astron. 64 286811 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|