Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 097401    DOI: 10.1088/0256-307X/39/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors
Yuhao Gu1, Kun Jiang1,2, Xianxin Wu3, and Jiangping Hu1,4*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Yuhao Gu, Kun Jiang, Xianxin Wu et al  2022 Chin. Phys. Lett. 39 097401
Download: PDF(11283KB)   PDF(mobile)(11498KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We predict that the square lattice layer formed by [Co$_2$N$_2$]$^{2-}$ diamond-like units can host high-temperature superconductivity. The layer appears in the stable ternary cobalt nitride, BaCo$_2$N$_2$. The electronic physics of the material stems from Co$_2$N$_2$ layers where the dimerized Co pairs form a square lattice. The low energy physics near Fermi energy can be described by an effective two-orbital model. Without considering interlayer couplings, the two orbitals are effectively decoupled. This electronic structure satisfies the “gene” character proposed for unconventional high-temperature superconductors. We predict that the leading superconducting pairing instability is driven from an extended $s$-wave ($s^\pm$) to a $d$-wave by hole doping, e.g., in Ba$_{1-x}$K$_x$Co$_2$N$_2$. This study provides a new platform to establish the superconducting mechanism of unconventional high-temperature superconductivity.
Received: 27 July 2022      Express Letter Published: 31 August 2022
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.20.Pq (Electronic structure calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/097401       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuhao Gu
Kun Jiang
Xianxin Wu
and Jiangping Hu
[1] Hu J, Le C, and Wu X 2015 Phys. Rev. X 5 041012
[2] Hu J 2016 Sci. Bull. 61 561
[3] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[4] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[5] Hu J and Le C 2017 Sci. Bull. 62 212
[6] Le C, Qin S, and Hu J 2017 Sci. Bull. 62 563
[7] Hu J, Gu Y, and Le C 2018 Sci. Bull. 63 1338
[8] Poltavets V V, Greenblatt M, Fecher G H, and Felser C 2009 Phys. Rev. Lett. 102 046405
[9] Seo K J, Bernevig B A, and Hu J P 2008 Phys. Rev. Lett. 101 206404
[10] Hirschfeld P J, Korshunov M M, and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[11] Damascelli A, Hussain Z, and Shen Z X 2003 Rev. Mod. Phys. 75 473
[12] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[13] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[14] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, and Marzari N 2008 Comput. Phys. Commun. 178 685
[16] Marzari N, Mostofi A A, Yates J R, Souza I, and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[17] Jiang K, Hu J, Ding H, and Wang Z 2016 Phys. Rev. B 93 115138
[18] Gu Y, Wu X, Jiang K, and Hu J 2021 Chin. Phys. Lett. 38 017501
[19] Liechtenstein A, Anisimov V I, and Zaanen J 1995 Phys. Rev. B 52 R5467
[20] Ma F, Ji W, Hu J, Lu Z Y, and Xiang T 2009 Phys. Rev. Lett. 102 177003
[21] Zeng J, Qing S, Le C, and Hu J 2017 Phys. Rev. B 96 174506
[22] Castellani C, Natoli C R, and Ranninger J 1978 Phys. Rev. B 18 4945
[23] Georges A, de Medici L, and Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137
[24]Kugel K I and Khomskii D I 1973 Sov. Phys.-JETP 37 725
[25] Kugel K I and Khomskii D I 1982 Sov. Phys. Usp. 25 231
[26] Bunemann J, Weber W, and Gebhard F 1998 Phys. Rev. B 57 6896
[27] Lechermann F, Georges A, Kotliar G, and Parcollet O 2007 Phys. Rev. B 76 155102
[28] Zhou S and Wang Z 2010 Phys. Rev. Lett. 105 096401
[29] Zhou S, Gao M, Ding H, Lee P A, and Wang Z 2005 Phys. Rev. Lett. 94 206401
[30] Jiang K, Wu X, Hu J, and Wang Z 2018 Phys. Rev. Lett. 121 227002
[31] Ren Y, Xu J H, and Ting C S 1996 Phys. Rev. B 53 2249
[32] Matsumoto M and Shiba H 1996 J. Phys. Soc. Jpn. 65 2194
[33] Li Q P, Koltenbah B E C, and Joynt R 1993 Phys. Rev. B 48 437
[34] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 097401
[2] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 097401
[3] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 097401
[4] Shuyuan Zhang, Guangyao Miao, Jiaqi Guan, Xiaofeng Xu, Bing Liu, Fang Yang, Weihua Wang, Xuetao Zhu, Jiandong Guo. Superconductivity of the FeSe/SrTiO$_{3}$ Interface in View of BCS–BEC Crossover[J]. Chin. Phys. Lett., 2019, 36(10): 097401
[5] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 097401
[6] Zhidan Li, Qiang Han. Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain[J]. Chin. Phys. Lett., 2018, 35(7): 097401
[7] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 097401
[8] Gargee Sharma, Smita Sharma. Theoretical Study of Screening Dependence of Aluminium Doped MgB$_{2}$[J]. Chin. Phys. Lett., 2018, 35(3): 097401
[9] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 097401
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 097401
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 097401
[12] ZHOU Jian-Hui, QIN Tao, SHI Jun-Ren. Intra-Valley Spin-Triplet p+ip Superconducting Pairing in Lightly Doped Graphene[J]. Chin. Phys. Lett., 2013, 30(1): 097401
[13] Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors[J]. Chin. Phys. Lett., 2010, 27(2): 097401
[14] Aditya M. Vora. Modified Transition Temperature Equation for Superconductors[J]. Chin. Phys. Lett., 2008, 25(6): 097401
[15] Aditya M. Vora. Superconducting State Parameters of CuCZr100-C Binary Amorphous Alloys by Pseudopotential Approach[J]. Chin. Phys. Lett., 2007, 24(9): 097401
Viewed
Full text


Abstract