CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point |
Yunchao Hao1†, Gaopei Pan2,3†, Kai Sun4*, Zi Yang Meng5*, and Yang Qi1,6* |
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 4Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA 5Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China 6Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
|
|
Cite this article: |
Yunchao Hao, Gaopei Pan, Kai Sun et al 2022 Chin. Phys. Lett. 39 097102 |
|
|
Abstract We utilize both analytical and numerical methods to study the superconducting transition temperature $T_{\rm c}$ near a fermionic quantum critical point (QCP) using a model constructed by Xu et al. [Phys. Rev. X 7, 031059 (2017)] as an example. In this model, the bosonic critical fluctuation plays the role of pairing glue for the Cooper pairs, and we use a Bardeen–Cooper–Schrieffer-type mean-field theory to estimate $T_{\rm c}$. We further argue that the $T_{\rm c}$ computed from the BCS theory approximates a pseudogap temperature $T_{\rm PG}$, instead of the Berezinskii–Kosterlitz–Thouless transition temperature $T_{\rm KT}$, which is confirmed by our determinant quantum Monte Carlo simulation. Moreover, due to the fact that electron density of state starts to deplete at $T_{\rm PG}$, the critical scaling of the underlying QCP is also affected below $T_{\rm PG}$. Thus, when studying the critical behavior of fermionic QCPs, we need to monitor that the temperature is above $T_{\rm PG}$ instead of $T_{\rm KT}$. This was often ignored in previous studies.
|
|
Received: 17 June 2022
Published: 03 September 2022
|
|
PACS: |
71.10.-w
|
(Theories and models of many-electron systems)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
02.70.Ss
|
(Quantum Monte Carlo methods)
|
|
|
|
|
[1] | Maier T A and Scalapino D J 2014 Phys. Rev. B 90 174510 |
[2] | Lederer S, Schattner Y, Berg E, and Kivelson S A 2015 Phys. Rev. Lett. 114 097001 |
[3] | Metlitski M A, Mross D F, Sachdev S, and Senthil T 2015 Phys. Rev. B 91 115111 |
[4] | Mandal I 2016 Phys. Rev. B 94 115138 |
[5] | Lederer S, Schattner Y, Berg E, and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905 |
[6] | Li Z X, Wang F, Yao H, and Lee D H 2017 Phys. Rev. B 95 214505 |
[7] | Sachdev S 2010 Phys. Status Solidi (b) 247 537 |
[8] | Ishida K, Onishi Y, Tsujii M, Mukasa K, Qiu M, Saito M, Sugimura Y, Matsuura K, Mizukami Y, Hashimoto K, and Shibauchi T 2022 Proc. Natl. Acad. Sci. USA 119 e2110501119 |
[9] | Oganesyan V, Kivelson S A, and Fradkin E 2001 Phys. Rev. B 64 195109 |
[10] | Metzner W, Rohe D, and Andergassen S 2003 Phys. Rev. Lett. 91 066402 |
[11] | Lee S S 2009 Phys. Rev. B 80 165102 |
[12] | Metlitski M A and Sachdev S 2010 Phys. Rev. B 82 075127 |
[13] | Metlitski M A and Sachdev S 2010 Phys. Rev. B 82 075128 |
[14] | Mross D F, McGreevy J, Liu H, and Senthil T 2010 Phys. Rev. B 82 045121 |
[15] | Holder T and Metzner W 2015 Phys. Rev. B 92 041112 |
[16] | Schlief A, Lunts P, and Lee S S 2017 Phys. Rev. X 7 021010 |
[17] | Xu X Y, Liu Z H, Pan G, Qi Y, Sun K, and Meng Z Y 2019 J. Phys.: Condens. Matter 31 463001 |
[18] | Berg E, Lederer S, Schattner Y, and Trebst S 2019 Annu. Rev. Condens. Matter Phys. 10 63 |
[19] | Xu X Y, Sun K, Schattner Y, Berg E, and Meng Z Y 2017 Phys. Rev. X 7 031058 |
[20] | Liu Z H, Xu X Y, Qi Y, Sun K, and Meng Z Y 2018 Phys. Rev. B 98 045116 |
[21] | Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 |
[22] | Kosterlitz J M 1974 J. Phys. C 7 1046 |
[23] | Baskaran G, Zou Z, and Anderson P W 1987 Solid State Commun. 63 973 |
[24] | Altland A and Simons B D 2010 Condensed Matter Field Theory (Cambridge: Cambridge University Press) |
[25] | Blankenbecler R, Scalapino D, and Sugar R 1981 Phys. Rev. D 24 2278 |
[26] | Hirsch J E 1985 Phys. Rev. B 31 4403 |
[27] | Assaad F and Evertz H 2008 Computational Many-Particle Physics (Berlin: Springer) p 277 |
[28] | Hirsch J E 1983 Phys. Rev. B 28 4059 |
[29] | Isakov S and Moessner R 2003 Phys. Rev. B 68 104409 |
[30] | Sandvik A W 1998 Phys. Rev. B 57 10287 |
[31] | Sandvik A W 2016 Phys. Rev. E 94 063308 |
[32] | Beach K 2004 arXiv:cond-mat/0403055 [cond-mat.str-el] |
[33] | Shao H and Sandvik A W 2022 arXiv:2202.09870 [cond-mat.str-el] |
[34] | Jiang W, Liu Y, Klein A, Wang Y, Sun K, Chubukov A V, and Meng Z Y 2022 Nat. Commun. 13 2655 |
[35] | Emery V and Kivelson S 1995 Nature 374 434 |
[36] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 |
[37] | Dahm T, Hinkov V, Borisenko S, Kordyuk A, Zabolotnyy V, Fink J, Büchner B, Scalapino D, Hanke W, and Keimer B 2009 Nat. Phys. 5 217 |
[38] | Reber T, Plumb N, Cao Y, Sun Z, Wang Q, McElroy K, Iwasawa H, Arita M, Wen J, Xu Z et al. 2013 Phys. Rev. B 87 060506 |
[39] | Migdal A 1958 Sov. Phys.-JETP 34 996 |
[40] | Eliashberg G 1960 Sov. Phys.-JETP 11 696 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|