Chin. Phys. Lett.  2022, Vol. 39 Issue (9): 094201    DOI: 10.1088/0256-307X/39/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations
Chong Liu1,2,3,4*, Shao-Chun Chen1, Xiankun Yao1,3*, and Nail Akhmediev2*
1School of Physics, Northwest University, Xi'an 710127, China
2Optical Sciences Group, Department of Fundamental and Theoretical Physics, Research School of Physics, The Australian National University, Canberra ACT 2600, Australia
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
4NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
Cite this article:   
Chong Liu, Shao-Chun Chen, Xiankun Yao et al  2022 Chin. Phys. Lett. 39 094201
Download: PDF(7490KB)   PDF(mobile)(7493KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We reveal a special subset of non-degenerate Akhmediev breather (AB) solutions of Manakov equations that only exist in the focusing case. Based on exact solutions, we present the existence diagram of such excitations on the frequency-wavenumber plane. Conventional single-frequency modulation instability leads to simultaneous excitation of three ABs with two of them being non-degenerate.
Received: 27 June 2022      Express Letter Published: 10 August 2022
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/9/094201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chong Liu
Shao-Chun Chen
Xiankun Yao
and Nail Akhmediev
[1]Bespalov V I and Talanov V I 1966 JETP Lett. 3 307
[2] Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417
[3] Solli D R, Ropers C, Koonath P, and Jalali B 2007 Nature 450 1054
[4] Solli D R, Herink G, Jalali B, and Ropers C 2012 Nat. Photon. 6 463
[5] Nguyen J H V, Luo D, and Hulet R G 2017 Science 356 422
[6] Chen C A and Hung C L 2020 Phys. Rev. Lett. 125 250401
[7] Leykam D, Smolina E, Maluckov A, Flach S, and Smirnova D A 2021 Phys. Rev. Lett. 126 073901
[8] Akhmediev N, Ankiewicz A, Taki M 2009 Phys. Lett. A 373 675
[9] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, and Dudley J M 2010 Nat. Phys. 6 790
[10] Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photon. 8 755
[11] Dudley J M, Genty G, Mussot A, Chabchoub A, and Dias F 2019 Nat. Rev. Phys. 1 675
[12] Akhmediev N 2001 Nature 413 267
[13] Akhmediev N, Heatley D R, Stegeman G I, and Wright E M 1990 Phys. Rev. Lett. 65 1423
[14] Van Simaeys G, Emplit P, and Haelterman M 2001 Phys. Rev. Lett. 87 033902
[15] Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, and Trillo S 2018 Nat. Photon. 12 303
[16] Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017
[17] Conforti M, Mussot A, Kudlinski A, Trillo S, and Akhmediev N 2020 Phys. Rev. A 101 023843
[18] Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, and Akhmediev N 2021 Proc. Natl. Acad. Sci. USA 118 e2019348118
[19] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[20] Liu C, Wu Y H, Chen S C, Yao X, and Akhmediev N 2021 Phys. Rev. Lett. 127 094102
[21]Akhmediev N, Korneev V I, and Mitskevich N V 1988 Sov. Phys.-JETP 67 89
[22] Erkintalo M, Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M, and Genty G 2011 Phys. Rev. Lett. 107 253901
[23] Zakharov V E and Gelash A 2013 Phys. Rev. Lett. 111 054101
[24] Trillo S and Conforti M 2019 Opt. Lett. 44 4275
[25] El G A et al. 1993 Phys. Lett. A 177 357
[26] Biondini G and Mantzavinos D 2016 Phys. Rev. Lett. 116 043902
[27] Kraych A E, Suret P, El G, and Randoux S 2019 Phys. Rev. Lett. 122 054101
[28] Gelash A, Agafontsev D, Zakharov V, El G, Randoux S, and Suret P 2019 Phys. Rev. Lett. 123 234102
[29] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[30] Dudley J M, Genty G, Dias F, Kibler B, Akhmediev N 2009 Opt. Express 17 21497
[31] Akhmediev N, Ankiewicz A, Soto-Crespo J M, Dudley J M 2011 Phys. Lett. A 375 775
[32] Soto-Crespo J M, Devine N, and Akhmediev N 2016 Phys. Rev. Lett. 116 103901
[33] Kimmoun O, Hsu H C, Kibler B, and Chabchoub A 2017 Phys. Rev. E 96 022219
[34]Agrawal G 2012 Nonlinear Fiber Optics 5th edn (San Diego: Academic Press)
[35] Kevrekidis P G, Frantzeskakis D, and Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Berlin: Springer)
[36] Onorato M, Osborne A R, and Serio M 2006 Phys. Rev. Lett. 96 014503
[37]Manakov S V 1974 Sov. Phys.-JETP 38 248
[38] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[39] Kalla C 2011 J. Phys. A 44 335210
[40] Baronio F, Degasperis A, Conforti M, and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[41] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M, and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
[42] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[43] Liu C, Yang Z Y, Zhao L C, and Yang W L 2014 Phys. Rev. A 89 055803
[44] Ling L M and Zhao L C 2018 Commun. Nonlinear Sci. & Numer. Simul. 72 449
[45] Chen S C, Liu C, Yao X, Zhao L C, and Akhmediev N 2021 Phys. Rev. E 104 024215
[46] Frisquet B, Kibler B, Morin P, Baronio F, Conforti M, Millot G, and Wabnitz S 2016 Sci. Rep. 6 20785
[47] Baronio F, Frisquet B, Chen S, Millot G, Wabnitz S, and Kibler B 2018 Phys. Rev. A 97 013852
[48] Qin Y H, Zhao L C, and Ling L M 2019 Phys. Rev. E 100 022212
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 094201
[2] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 094201
[3] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 094201
[4] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 094201
[5] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 094201
[6] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 094201
[7] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 094201
[8] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 094201
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 094201
[10] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 094201
[11] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 094201
[12] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 094201
[13] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 094201
[14] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 094201
[15] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 094201
Viewed
Full text


Abstract