Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 071201    DOI: 10.1088/0256-307X/39/7/071201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Novel and Self-Consistency Analysis of the QCD Running Coupling $\alpha_{\rm s}(Q)$ in Both the Perturbative and Nonperturbative Domains
Qing Yu1,2, Hua Zhou1,2, Xu-Dong Huang1, Jian-Ming Shen3, and Xing-Gang Wu1*
1Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
2Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway
3School of Physics and Electronics, Hunan University, Changsha 410082, China
Cite this article:   
Qing Yu, Hua Zhou, Xu-Dong Huang et al  2022 Chin. Phys. Lett. 39 071201
Download: PDF(548KB)   PDF(mobile)(690KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum chromodynamics (QCD) coupling $\alpha_{\rm s}$ is the most important parameter for achieving precise QCD predictions. By using the well measured effective coupling $\alpha^{g_1}_{\rm s}(Q)$ defined from the Bjorken sum rules as a basis, we suggest a novel self-consistency way to fix the $\alpha_{\rm s}$ at all scales: The QCD light-front holographic model is adopted for its infrared behavior, and the fixed-order pQCD prediction under the principle of maximum conformality (PMC) is used for its high-energy behavior. Using the PMC scheme-and-scale independent perturbative series, and by transforming it into the one under the physical V scheme, we observe that a precise $\alpha_{\rm s}$ running behavior in both the perturbative and nonperturbative domains with a smooth transition from small to large scales can be achieved.
Received: 27 May 2022      Express Letter Published: 18 June 2022
PACS:  12.38.Aw (General properties of QCD (dynamics, confinement, etc.))  
  12.38.Bx (Perturbative calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/071201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/071201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing Yu
Hua Zhou
Xu-Dong Huang
Jian-Ming Shen
and Xing-Gang Wu
[1] Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343
[2] Politzer H D 1973 Phys. Rev. Lett. 30 1346
[3] Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387
[4] Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1
[5] Brodsky S J, de Teramond G F, Dosch H G, and Erlich J 2015 Phys. Rep. 584 1
[6] Grunberg G 1980 Phys. Lett. B 95 70
[7] Grunberg G 1984 Phys. Rev. D 29 2315
[8] Bjorken J D 1966 Phys. Rev. 148 1467
[9] Bjorken J D 1970 Phys. Rev. D 1 1376
[10] Deur A et al. 2004 Phys. Rev. Lett. 93 212001
[11] Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244
[12] Deur A et al. 2008 Phys. Rev. D 78 032001
[13] Deur A et al. 2014 Phys. Rev. D 90 012009
[14] Yu Q, Wu X G, Zhou H, and Huang X D 2021 Eur. Phys. J. C 81 690
[15] Baikov P A, Chetyrkin K G, and Kuhn J H 2010 Phys. Rev. Lett. 104 132004
[16] Baikov P A, Chetyrkin K G, Kuhn J H, and Rittinger J 2012 J. High Energy Phys. 2012(07) 017
[17] Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010
[18] Zhang Q L, Wu X G, Zheng X C, Wang S Q, Fu H B, and Fang Z Y 2014 Chin. Phys. Lett. 31 051202
[19] Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528
[20] Deur A, Brodsky S J, and de Teramond G F 2016 Phys. Lett. B 757 275
[21] Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98
[22] Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038
[23] Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002
[24] Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026
[25] Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001
[26] Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027
[27] Wu X G et al. 2015 Rep. Prog. Phys. 78 126201
[28] Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706
[29]Petermann A 1953 Helv. Phys. Acta 26 499
[30] Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300
[31] Callan C G and J 1970 Phys. Rev. D 2 1541
[32] Symanzik K 1970 Commun. Math. Phys. 18 227
[33] Peterman A 1979 Phys. Rep. 53 157
[34] Brodsky S J, Lepage G P, and Mackenzie P B 1983 Phys. Rev. D 28 228
[35] Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006
[36] Wu X G, Shen J M, Du B L, and Brodsky S J 2018 Phys. Rev. D 97 094030
[37] Huang X D et al. 2021 arXiv:2109.12356 [hep-ph]
[38] Brodsky S J and Lu H J 1995 Phys. Rev. D 51 3652
[39] Appelquist T, Dine M, and Muzinich I J 1977 Phys. Lett. B 69 231
[40] Fischler W 1977 Nucl. Phys. B 129 157
[41] Peter M 1997 Phys. Rev. Lett. 78 602
[42] Schröder Y 1999 Phys. Lett. B 447 321
[43] Brodsky S J, Hoang A H, Kuhn J H, and Teubner T 1995 Phys. Lett. B 359 355
[44] Brodsky S J, Ji C R, Pang A, and Robertson D G 1998 Phys. Rev. D 57 245
[45] Brodsky S J, Gill M S, Melles M, and Rathsman J 1998 Phys. Rev. D 58 116006
[46] Bi H Y, Wu X G, Ma Y, Ma H H, Brodsky S J, and Mojaza M 2015 Phys. Lett. B 748 13
[47] Chetyrkin K G 2005 Nucl. Phys. B 710 499
[48] Czakon M 2005 Nucl. Phys. B 710 485
[49] Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002
[50] Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01
[51] Zheng X C, Wu X G, Wang S Q, Shen J M, and Zhang Q L 2013 J. High Energy Phys. 2013(10) 117
[52] Huang X D, Wu X G, Yu Q, Zheng X C, and Zeng J 2021 Nucl. Phys. B 969 115466
[53] Basdevant J L 1972 Fortschr. Phys. 20 283
[54] Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182
[55] Ackerstaff K et al. (OPAL Collaboration) 1999 Eur. Phys. J. C 7 571
[56] Brodsky S J, Menke S, Merino C, and Rathsman J 2003 Phys. Rev. D 67 055008
[57] Gross D J and Smith C H L 1969 Nucl. Phys. B 14 337
[58] Kim J H et al. 1998 Phys. Rev. Lett. 81 3595
[59] Ackerstaff K et al. (HERMES Collaboration) 1997 Phys. Lett. B 404 383
Ackerstaff K et al. (HERMES Collaboration) 1998 Phys. Lett. B 444 531
Airapetian A et al. (HERMES Collaboration) 1998 Phys. Lett. B 442 484
Airapetian A et al. (HERMES Collaboration) 2003 Phys. Rev. Lett. 90 092002
Airapetian A et al. (HERMES Collaboration) 2007 Phys. Rev. D 75 012007
[60] Alexakhin V Y et al. (COMPASS Collaboration) 2007 Phys. Lett. B 647 8
Alekseev M G et al. (COMPASS Collaboration) 2010 Phys. Lett. B 690 466
Adolph C et al. (COMPASS Collaboration) 2016 Phys. Lett. B 753 18
[61] Anthony P L et al. (E142 Collaboration) 1993 Phys. Rev. Lett. 71 959
Anthony P L et al. (E142 Collaboration) 1996 Phys. Rev. D 54 6620
Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 74 346
Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 75 25
Abe K et al. (E143 Collaboration) 1996 Phys. Rev. Lett. 76 587
Abe K et al. (E143 Collaboration) 1995 Phys. Lett. B 364 61
Abe K et al. (E143 Collaboration) 1998 Phys. Rev. D 58 112003
[62] Abe K et al. (E154 Collaboration) 1997 Phys. Rev. Lett. 79 26
Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 404 377
Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 405 180
[63] Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 458 529
Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 463 339
Anthony P L et al. (E155 Collaboration) 2000 Phys. Lett. B 493 19
Anthony P L et al. (E155 Collaboration) 2003 Phys. Lett. B 553 18
[64] Adeva B et al. (Spin Muon Collaboration) 1998 Phys. Rev. D 58 112001
Related articles from Frontiers Journals
[1] Zhu-Fang Cui, Fei Gao, Daniele Binosi, Lei Chang, Craig D. Roberts, and Sebastian M. Schmidt. Valence Quark Ratio in the Proton[J]. Chin. Phys. Lett., 2022, 39(4): 071201
[2] Lei Chang and Craig D. Roberts. Regarding the Distribution of Glue in the Pion[J]. Chin. Phys. Lett., 2021, 38(8): 071201
[3] ZHU Hui-Xia, SUN Wei-Min, ZONG Hong-Shi. The Quark Number Susceptibility of QCD at Finite Temperature and Chemical Potential[J]. Chin. Phys. Lett., 2013, 30(5): 071201
[4] Ali Reza Sepehri, Somayyeh Shoorvazi. Calculation of a Three-Jet Cross Section via the e+e?→Hadronic Rindler Horizon→ qqg Process[J]. Chin. Phys. Lett., 2013, 30(2): 071201
[5] YAN Yan, CAO Jing, LUO Xin-Lian, SUN Wei-Min, ZONG Hong-Shi. Quark Stars Investigated using an Improved Quasi-Particle Model[J]. Chin. Phys. Lett., 2012, 29(10): 071201
[6] JIA Duo-Jie, WANG Xiao-Wei, LIU Feng . Analytical Solution for the SU(2) Hedgehog Skyrmion and Static Properties of Nucleons[J]. Chin. Phys. Lett., 2010, 27(12): 071201
[7] XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects[J]. Chin. Phys. Lett., 2010, 27(7): 071201
[8] ZHANG Yan-Bin, SUN Wei-Min, LÜ, Xiao-Fu, ZONG Hong-Shi,. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator[J]. Chin. Phys. Lett., 2009, 26(8): 071201
[9] ZENG Dai-Min, WU Xing-Gang, FANG Zhen-Yun. B-Meson Wavefunction by a Comparative Analysis of the B→π,K Transition Form Factors[J]. Chin. Phys. Lett., 2009, 26(2): 071201
[10] ZENG Dai-Min, WU Xing-Gang, FANG Zhen-Yun. B→K Transition Form Factor with Tensor Current within the kT Factorization Approach[J]. Chin. Phys. Lett., 2008, 25(2): 071201
[11] HE Deng-Ke, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature[J]. Chin. Phys. Lett., 2008, 25(2): 071201
[12] YANG Shu, GUO Hua, ZHAO En-Guang, Lü Xiao-Fu,. QCD Phase Transitions and Bag Constants at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(11): 071201
[13] QIU Cong-Xin, XU Ren-Xin. Colour-Charged Quark Matter in Astrophysics?[J]. Chin. Phys. Lett., 2006, 23(12): 071201
[14] DONG Yu-Bing. Proton Spin Structure Functions and Quark--Hadron Duality[J]. Chin. Phys. Lett., 2006, 23(9): 071201
[15] ZONG Hong-Shi, , SUN Wei-Min, , PING Jia-Lun, Lü Xiao-Fu, WANG Fan,. Does There Exist Only One Solution of the Dyson--Schwinger Equation for the Quark Propagator in the Case of Non-Zero Current Quark Mass[J]. Chin. Phys. Lett., 2005, 22(12): 071201
Viewed
Full text


Abstract