THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Novel and Self-Consistency Analysis of the QCD Running Coupling $\alpha_{\rm s}(Q)$ in Both the Perturbative and Nonperturbative Domains |
Qing Yu1,2, Hua Zhou1,2, Xu-Dong Huang1, Jian-Ming Shen3, and Xing-Gang Wu1* |
1Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China 2Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway 3School of Physics and Electronics, Hunan University, Changsha 410082, China
|
|
Cite this article: |
Qing Yu, Hua Zhou, Xu-Dong Huang et al 2022 Chin. Phys. Lett. 39 071201 |
|
|
Abstract The quantum chromodynamics (QCD) coupling $\alpha_{\rm s}$ is the most important parameter for achieving precise QCD predictions. By using the well measured effective coupling $\alpha^{g_1}_{\rm s}(Q)$ defined from the Bjorken sum rules as a basis, we suggest a novel self-consistency way to fix the $\alpha_{\rm s}$ at all scales: The QCD light-front holographic model is adopted for its infrared behavior, and the fixed-order pQCD prediction under the principle of maximum conformality (PMC) is used for its high-energy behavior. Using the PMC scheme-and-scale independent perturbative series, and by transforming it into the one under the physical V scheme, we observe that a precise $\alpha_{\rm s}$ running behavior in both the perturbative and nonperturbative domains with a smooth transition from small to large scales can be achieved.
|
|
Received: 27 May 2022
Express Letter
Published: 18 June 2022
|
|
PACS: |
12.38.Aw
|
(General properties of QCD (dynamics, confinement, etc.))
|
|
12.38.Bx
|
(Perturbative calculations)
|
|
|
|
|
[1] | Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343 |
[2] | Politzer H D 1973 Phys. Rev. Lett. 30 1346 |
[3] | Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387 |
[4] | Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 |
[5] | Brodsky S J, de Teramond G F, Dosch H G, and Erlich J 2015 Phys. Rep. 584 1 |
[6] | Grunberg G 1980 Phys. Lett. B 95 70 |
[7] | Grunberg G 1984 Phys. Rev. D 29 2315 |
[8] | Bjorken J D 1966 Phys. Rev. 148 1467 |
[9] | Bjorken J D 1970 Phys. Rev. D 1 1376 |
[10] | Deur A et al. 2004 Phys. Rev. Lett. 93 212001 |
[11] | Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244 |
[12] | Deur A et al. 2008 Phys. Rev. D 78 032001 |
[13] | Deur A et al. 2014 Phys. Rev. D 90 012009 |
[14] | Yu Q, Wu X G, Zhou H, and Huang X D 2021 Eur. Phys. J. C 81 690 |
[15] | Baikov P A, Chetyrkin K G, and Kuhn J H 2010 Phys. Rev. Lett. 104 132004 |
[16] | Baikov P A, Chetyrkin K G, Kuhn J H, and Rittinger J 2012 J. High Energy Phys. 2012(07) 017 |
[17] | Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010 |
[18] | Zhang Q L, Wu X G, Zheng X C, Wang S Q, Fu H B, and Fang Z Y 2014 Chin. Phys. Lett. 31 051202 |
[19] | Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528 |
[20] | Deur A, Brodsky S J, and de Teramond G F 2016 Phys. Lett. B 757 275 |
[21] | Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98 |
[22] | Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038 |
[23] | Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002 |
[24] | Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026 |
[25] | Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001 |
[26] | Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027 |
[27] | Wu X G et al. 2015 Rep. Prog. Phys. 78 126201 |
[28] | Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706 |
[29] | Petermann A 1953 Helv. Phys. Acta 26 499 |
[30] | Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 |
[31] | Callan C G and J 1970 Phys. Rev. D 2 1541 |
[32] | Symanzik K 1970 Commun. Math. Phys. 18 227 |
[33] | Peterman A 1979 Phys. Rep. 53 157 |
[34] | Brodsky S J, Lepage G P, and Mackenzie P B 1983 Phys. Rev. D 28 228 |
[35] | Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006 |
[36] | Wu X G, Shen J M, Du B L, and Brodsky S J 2018 Phys. Rev. D 97 094030 |
[37] | Huang X D et al. 2021 arXiv:2109.12356 [hep-ph] |
[38] | Brodsky S J and Lu H J 1995 Phys. Rev. D 51 3652 |
[39] | Appelquist T, Dine M, and Muzinich I J 1977 Phys. Lett. B 69 231 |
[40] | Fischler W 1977 Nucl. Phys. B 129 157 |
[41] | Peter M 1997 Phys. Rev. Lett. 78 602 |
[42] | Schröder Y 1999 Phys. Lett. B 447 321 |
[43] | Brodsky S J, Hoang A H, Kuhn J H, and Teubner T 1995 Phys. Lett. B 359 355 |
[44] | Brodsky S J, Ji C R, Pang A, and Robertson D G 1998 Phys. Rev. D 57 245 |
[45] | Brodsky S J, Gill M S, Melles M, and Rathsman J 1998 Phys. Rev. D 58 116006 |
[46] | Bi H Y, Wu X G, Ma Y, Ma H H, Brodsky S J, and Mojaza M 2015 Phys. Lett. B 748 13 |
[47] | Chetyrkin K G 2005 Nucl. Phys. B 710 499 |
[48] | Czakon M 2005 Nucl. Phys. B 710 485 |
[49] | Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002 |
[50] | Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01 |
[51] | Zheng X C, Wu X G, Wang S Q, Shen J M, and Zhang Q L 2013 J. High Energy Phys. 2013(10) 117 |
[52] | Huang X D, Wu X G, Yu Q, Zheng X C, and Zeng J 2021 Nucl. Phys. B 969 115466 |
[53] | Basdevant J L 1972 Fortschr. Phys. 20 283 |
[54] | Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182 |
[55] | Ackerstaff K et al. (OPAL Collaboration) 1999 Eur. Phys. J. C 7 571 |
[56] | Brodsky S J, Menke S, Merino C, and Rathsman J 2003 Phys. Rev. D 67 055008 |
[57] | Gross D J and Smith C H L 1969 Nucl. Phys. B 14 337 |
[58] | Kim J H et al. 1998 Phys. Rev. Lett. 81 3595 |
[59] | Ackerstaff K et al. (HERMES Collaboration) 1997 Phys. Lett. B 404 383 |
| Ackerstaff K et al. (HERMES Collaboration) 1998 Phys. Lett. B 444 531 |
| Airapetian A et al. (HERMES Collaboration) 1998 Phys. Lett. B 442 484 |
| Airapetian A et al. (HERMES Collaboration) 2003 Phys. Rev. Lett. 90 092002 |
| Airapetian A et al. (HERMES Collaboration) 2007 Phys. Rev. D 75 012007 |
[60] | Alexakhin V Y et al. (COMPASS Collaboration) 2007 Phys. Lett. B 647 8 |
| Alekseev M G et al. (COMPASS Collaboration) 2010 Phys. Lett. B 690 466 |
| Adolph C et al. (COMPASS Collaboration) 2016 Phys. Lett. B 753 18 |
[61] | Anthony P L et al. (E142 Collaboration) 1993 Phys. Rev. Lett. 71 959 |
| Anthony P L et al. (E142 Collaboration) 1996 Phys. Rev. D 54 6620 |
| Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 74 346 |
| Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 75 25 |
| Abe K et al. (E143 Collaboration) 1996 Phys. Rev. Lett. 76 587 |
| Abe K et al. (E143 Collaboration) 1995 Phys. Lett. B 364 61 |
| Abe K et al. (E143 Collaboration) 1998 Phys. Rev. D 58 112003 |
[62] | Abe K et al. (E154 Collaboration) 1997 Phys. Rev. Lett. 79 26 |
| Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 404 377 |
| Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 405 180 |
[63] | Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 458 529 |
| Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 463 339 |
| Anthony P L et al. (E155 Collaboration) 2000 Phys. Lett. B 493 19 |
| Anthony P L et al. (E155 Collaboration) 2003 Phys. Lett. B 553 18 |
[64] | Adeva B et al. (Spin Muon Collaboration) 1998 Phys. Rev. D 58 112001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|