GENERAL |
|
|
|
|
Cryo-EM Data Statistics and Theoretical Analysis of KaiC Hexamer |
Xu Han1, Zhaolong Wu1, Tian Yang1, and Qi Ouyang1,2* |
1Department of Physics, Peking University, Beijing 100871, China 2Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, AAIC, Peking University, Beijing 100871, China
|
|
Cite this article: |
Xu Han, Zhaolong Wu, Tian Yang et al 2022 Chin. Phys. Lett. 39 070501 |
|
|
Abstract Cryo-electron microscopy (cryo-EM) provides a powerful tool to resolve the structure of biological macromolecules in natural state. One advantage of cryo-EM technology is that different conformation states of a protein complex structure can be simultaneously built, and the distribution of different states can be measured. This provides a tool to push cryo-EM technology beyond just to resolve protein structures, but to obtain the thermodynamic properties of protein machines. Here, we used a deep manifold learning framework to get the conformational landscape of KaiC proteins, and further obtained the thermodynamic properties of this central oscillator component in the circadian clock by means of statistical physics.
|
|
Received: 11 May 2022
Editors' Suggestion
Published: 29 June 2022
|
|
PACS: |
05.10.Ln
|
(Monte Carlo methods)
|
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
64.60.De
|
(Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))
|
|
|
|
|
[1] | Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, and Kondo T 2005 Science 308 414 |
[2] | Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, and Kondo T 2002 Proc. Natl. Acad. Sci. USA 99 15788 |
[3] | Egli M, Mori T, Pattanayek R, Xu Y, Qin X, and Johnson C H 2012 Biochemistry 51 1547 |
[4] | Nishiwaki T and Kondo T 2012 J. Biol. Chem. 287 18030 |
[5] | Vakonakis I and Liwang A C 2004 Proc. Natl. Acad. Sci. USA 101 10925 |
[6] | Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, and Kondo T 2006 Mol. Cell 23 161 |
[7] | Kim Y I, Dong G, Carruthers C W, Golden Susan S, and Liwang A 2008 Proc. Natl. Acad. Sci. USA 105 12825 |
[8] | Pattanayek R and Egli M 2015 Biochemistry 54 4575 |
[9] | Pattanayek R, Williams D R, Pattanayek S, Xu Y, Mori T, Johnson C H, Stewart P L, and Egli M 2006 EMBO J. 25 2017 |
[10] | Brettschneider C, Rose R J, Hertel S, Axmann I M, Heck A J R, and Kollmann M 2010 Mol. Syst. Biol. 6 389 |
[11] | Qin X, Byrne M, Mori T, Zou P, Williams D R, Mchaourab H, and Johnson C H 2010 Proc. Natl. Acad. Sci. USA 107 14805 |
[12] | Phong C, Markson J S, Wilhoite C M, and Rust M J 2013 Proc. Natl. Acad. Sci. USA 110 1124 |
[13] | Chang Y G, Cohen S E, Phong C, Myers W K, Kim Y I, Tseng R, Lin J, Zhang L, Boyd J S, Lee Y, Kang S, Lee D, Li S, Britt R D, Rust M J, Golden S S, and Liwang A 2015 Science 349 324 |
[14] | Tseng R, Goularte N F, Chavan A, Luu J, Cohen S E, Chang Y G, Heisler J, Li S, Michael A K, Tripathi S, Golden S S, Liwang A, and Partch C L 2017 Science 355 1174 |
[15] | Snijder J, Schuller J M, Wiegard A, Lossl P, Schmelling N, Axmann I M, Plitzko J M, Forster F, and Heck A J 2017 Science 355 1181 |
[16] | Chang Y G, Kuo N W, Tseng R, and Liwang A 2011 Proc. Natl. Acad. Sci. USA 108 14431 |
[17] | Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, Maeda Y, Terauchi K, Kondo T, and Akiyama S 2011 EMBO J. 30 68 |
[18] | Hong L, Vani B P, Thiede E H, Rust M J, and Dinner A R 2018 Proc. Natl. Acad. Sci. USA 115 E11475 |
[19] | Yunoki Y, Ishii K, Yagi-Utsumi M, Murakami R, Uchiyama S, Yagi H, and Kato K 2019 Life Sci. Alliance 2 e201900368 |
[20] | Han X, Zhang D L, Hong L, Yu D Q, Wu Z L, Yang T, Rust M, Tu Y H, and Ouyang Q 2022 bioRxiv preprint doi:10.1101/2022.02.27.481910 |
[21] | Mastronarde D N 2005 J. Struct. Biol. 152 36 |
[22] | Scheres S H 2016 Methods Enzymol. 579 125 |
[23] | Zivanov J, Nakane T, Forsberg B O, Kimanius D, Hagen W J, Lindahl E, and Scheres S H 2018 eLife 7 e42166 |
[24] | Rosenthal P B and Henderson R 2003 J. Mol. Biol. 333 721 |
[25] | Penczek P A 2010 Methods Enzymol. 482 73 |
[26] | Wu Z L, Chen E B, Zhang S W, Ma Y P, Liu C C, Yin C C, and Mao Y D 2021 bioRxiv preprint doi:10.1101/2021.08.09.455739 |
[27] | Hinton G E and Roweis S T 2002 Proceedings of the 15th International Conference on Neural Information Processing Systems edited by Becker S, Thrun S and Obermayer K (Cambridge: MIT Press) |
[28] | van der Maaten L and Hinton G 2008 J. Mach. Learn. Res. 9 2579 |
[29] | Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79 |
[30] | Lin J, Chew J, Chockanathan U, and Rust M J 2014 Proc. Natl. Acad. Sci. USA 111 E3937 |
[31] | Mori T, Williams D R, Byrne M O, Qin X, Egli M, Mchaourab H S, Stewart P L, and Johnson C H 2007 PLOS Biol. 5 e93 |
[32] | Ito H, Kageyama H, Mutsuda M, Nakajima M, Oyama T, and Kondo T 2007 Nat. Struct. & Mol. Biol. 14 1084 |
[33] | Yoda M, Eguchi K, Terada T P, and Sasai M 2007 PLOS ONE 2 e408 |
[34] | Nagai T, Terada T P, and Sasai M 2010 Biophys. J. 98 2469 |
[35] | Zhang D, Cao Y, Ouyang Q, and Tu Y 2020 Nat. Phys. 16 95 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|