Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 070501    DOI: 10.1088/0256-307X/39/7/070501
GENERAL |
Cryo-EM Data Statistics and Theoretical Analysis of KaiC Hexamer
Xu Han1, Zhaolong Wu1, Tian Yang1, and Qi Ouyang1,2*
1Department of Physics, Peking University, Beijing 100871, China
2Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, AAIC, Peking University, Beijing 100871, China
Cite this article:   
Xu Han, Zhaolong Wu, Tian Yang et al  2022 Chin. Phys. Lett. 39 070501
Download: PDF(2367KB)   PDF(mobile)(2485KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cryo-electron microscopy (cryo-EM) provides a powerful tool to resolve the structure of biological macromolecules in natural state. One advantage of cryo-EM technology is that different conformation states of a protein complex structure can be simultaneously built, and the distribution of different states can be measured. This provides a tool to push cryo-EM technology beyond just to resolve protein structures, but to obtain the thermodynamic properties of protein machines. Here, we used a deep manifold learning framework to get the conformational landscape of KaiC proteins, and further obtained the thermodynamic properties of this central oscillator component in the circadian clock by means of statistical physics.
Received: 11 May 2022      Editors' Suggestion Published: 29 June 2022
PACS:  05.10.Ln (Monte Carlo methods)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/070501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I7/070501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Han
Zhaolong Wu
Tian Yang
and Qi Ouyang
[1] Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, and Kondo T 2005 Science 308 414
[2] Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, and Kondo T 2002 Proc. Natl. Acad. Sci. USA 99 15788
[3] Egli M, Mori T, Pattanayek R, Xu Y, Qin X, and Johnson C H 2012 Biochemistry 51 1547
[4] Nishiwaki T and Kondo T 2012 J. Biol. Chem. 287 18030
[5] Vakonakis I and Liwang A C 2004 Proc. Natl. Acad. Sci. USA 101 10925
[6] Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, and Kondo T 2006 Mol. Cell 23 161
[7] Kim Y I, Dong G, Carruthers C W, Golden Susan S, and Liwang A 2008 Proc. Natl. Acad. Sci. USA 105 12825
[8] Pattanayek R and Egli M 2015 Biochemistry 54 4575
[9] Pattanayek R, Williams D R, Pattanayek S, Xu Y, Mori T, Johnson C H, Stewart P L, and Egli M 2006 EMBO J. 25 2017
[10] Brettschneider C, Rose R J, Hertel S, Axmann I M, Heck A J R, and Kollmann M 2010 Mol. Syst. Biol. 6 389
[11] Qin X, Byrne M, Mori T, Zou P, Williams D R, Mchaourab H, and Johnson C H 2010 Proc. Natl. Acad. Sci. USA 107 14805
[12] Phong C, Markson J S, Wilhoite C M, and Rust M J 2013 Proc. Natl. Acad. Sci. USA 110 1124
[13] Chang Y G, Cohen S E, Phong C, Myers W K, Kim Y I, Tseng R, Lin J, Zhang L, Boyd J S, Lee Y, Kang S, Lee D, Li S, Britt R D, Rust M J, Golden S S, and Liwang A 2015 Science 349 324
[14] Tseng R, Goularte N F, Chavan A, Luu J, Cohen S E, Chang Y G, Heisler J, Li S, Michael A K, Tripathi S, Golden S S, Liwang A, and Partch C L 2017 Science 355 1174
[15] Snijder J, Schuller J M, Wiegard A, Lossl P, Schmelling N, Axmann I M, Plitzko J M, Forster F, and Heck A J 2017 Science 355 1181
[16] Chang Y G, Kuo N W, Tseng R, and Liwang A 2011 Proc. Natl. Acad. Sci. USA 108 14431
[17] Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, Maeda Y, Terauchi K, Kondo T, and Akiyama S 2011 EMBO J. 30 68
[18] Hong L, Vani B P, Thiede E H, Rust M J, and Dinner A R 2018 Proc. Natl. Acad. Sci. USA 115 E11475
[19] Yunoki Y, Ishii K, Yagi-Utsumi M, Murakami R, Uchiyama S, Yagi H, and Kato K 2019 Life Sci. Alliance 2 e201900368
[20] Han X, Zhang D L, Hong L, Yu D Q, Wu Z L, Yang T, Rust M, Tu Y H, and Ouyang Q 2022 bioRxiv preprint doi:10.1101/2022.02.27.481910
[21] Mastronarde D N 2005 J. Struct. Biol. 152 36
[22] Scheres S H 2016 Methods Enzymol. 579 125
[23] Zivanov J, Nakane T, Forsberg B O, Kimanius D, Hagen W J, Lindahl E, and Scheres S H 2018 eLife 7 e42166
[24] Rosenthal P B and Henderson R 2003 J. Mol. Biol. 333 721
[25] Penczek P A 2010 Methods Enzymol. 482 73
[26] Wu Z L, Chen E B, Zhang S W, Ma Y P, Liu C C, Yin C C, and Mao Y D 2021 bioRxiv preprint doi:10.1101/2021.08.09.455739
[27]Hinton G E and Roweis S T 2002 Proceedings of the 15th International Conference on Neural Information Processing Systems edited by Becker S, Thrun S and Obermayer K (Cambridge: MIT Press)
[28]van der Maaten L and Hinton G 2008 J. Mach. Learn. Res. 9 2579
[29] Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79
[30] Lin J, Chew J, Chockanathan U, and Rust M J 2014 Proc. Natl. Acad. Sci. USA 111 E3937
[31] Mori T, Williams D R, Byrne M O, Qin X, Egli M, Mchaourab H S, Stewart P L, and Johnson C H 2007 PLOS Biol. 5 e93
[32] Ito H, Kageyama H, Mutsuda M, Nakajima M, Oyama T, and Kondo T 2007 Nat. Struct. & Mol. Biol. 14 1084
[33] Yoda M, Eguchi K, Terada T P, and Sasai M 2007 PLOS ONE 2 e408
[34] Nagai T, Terada T P, and Sasai M 2010 Biophys. J. 98 2469
[35] Zhang D, Cao Y, Ouyang Q, and Tu Y 2020 Nat. Phys. 16 95
Related articles from Frontiers Journals
[1] Sheng Fang, Zongzheng Zhou, and Youjin Deng. Geometric Upper Critical Dimensions of the Ising Model[J]. Chin. Phys. Lett., 2022, 39(8): 070501
[2] Xiao Yang, Fan Wu, Dong-Dong Hu, Shuang Zhang, Meng-Bo Luo. Simulation of the Critical Adsorption of Semi-Flexible Polymers[J]. Chin. Phys. Lett., 2019, 36(9): 070501
[3] Dong-Yi Wang, Cheng Tan, Kevin Huang, Lei Shu. The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr$_{1-x}$Rh$_x$)$_4$O$_8$[J]. Chin. Phys. Lett., 2016, 33(12): 070501
[4] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan. Monte Carlo Renormalization Group Method to Study the First-Order Phase Transition in the Complex Ferromagnet[J]. Chin. Phys. Lett., 2015, 32(12): 070501
[5] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 070501
[6] LEI Xiao-Wei, ZHAO Xiao-Yu. Dynamic Simulation of Kosterlitz-Thouless Transition in Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2009, 26(1): 070501
[7] ZHAO Jian, LI Shui-Xiang. Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes[J]. Chin. Phys. Lett., 2008, 25(11): 070501
[8] LI Shui-Xiang, ZHAO Jian, ZHOU Xuan. Numerical Simulation of Random Close Packing with Tetrahedra[J]. Chin. Phys. Lett., 2008, 25(5): 070501
[9] LIU Zhi-Qing, LI Run-Ze, XU Ming-Mei, LIU Lian-Shou. A Measure for Isotropy-Equilibrium Degree of a Multi-Particle System[J]. Chin. Phys. Lett., 2008, 25(2): 070501
[10] SHAO Yuan-Zhi, J. K. L. Lai, C. H. Shek, LIN Guang-Min, LAN Tu. Nonequilibrium Dynamical Phase Transition of a Three-Dimensional Kinetic Heisenberg Spin System[J]. Chin. Phys. Lett., 2002, 19(9): 070501
[11] LIU Gang, HAN Ru-Shan. Dynamic Behaviour of Vortex Matter, Memory Effect and Mittag--Leffler Relaxation[J]. Chin. Phys. Lett., 2001, 18(2): 070501
Viewed
Full text


Abstract