GENERAL |
|
|
|
|
Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps |
Rong Du1, Jian-Chong Xing1, Bo Xiong2, Jun-Hui Zheng1, and Tao Yang1,3* |
1Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710127, China 2School of Science, Wuhan University of Technology, Wuhan 430070, China 3NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
|
|
Cite this article: |
Rong Du, Jian-Chong Xing, Bo Xiong et al 2022 Chin. Phys. Lett. 39 070304 |
|
|
Abstract By quenching the interatomic interactions, we investigate the nonequilibrium dynamics of two-dimensional Bose–Einstein condensates in boxlike traps with power-law potential boundaries. We show that ring dark solitons can be excited during the quench dynamics for both concave and convex potentials. The quench's modulation strength and the steepness of the boundary are two major factors influencing the system's evolution. In terms of the number of ring dark solitons excited in the condensate, five dynamic regimes have been identified. The condensate undergoes damped radius oscillation in the absence of ring dark soliton excitations. When it comes to the appearance of ring dark solitons, their decay produces interesting structures. The excitation patterns for the concave potential show a nested structure of vortex-antivortex pairs. The dynamic excitation patterns for the convex potential, on the other hand, show richer structures with multiple transport behaviors.
|
|
Received: 16 April 2022
Published: 17 June 2022
|
|
PACS: |
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
|
|
|
[1] | Eckardt A 2017 Rev. Mod. Phys. 89 011004 |
[2] | Dalibard J, Gerbier F, Juzeliūnas G, and Öhberg P 2011 Rev. Mod. Phys. 83 1523 |
[3] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 |
[4] | Mo L H, Zhang Q L, and Wan X 2020 Chin. Phys. Lett. 37 060301 |
[5] | Polkovnikov A, Sengupta K, Silva A, and Vengalattore M 2011 Rev. Mod. Phys. 83 863 |
[6] | Makotyn P, Klauss C E, Goldberger D L, Cornell E A, and Jin D S 2014 Nat. Phys. 10 116 |
[7] | Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, and Salomon C 2002 Science 296 1290 |
[8] | Nguyen J H V, Luo D, and Hulet R G 2017 Science 356 422 |
[9] | Carr L D and Brand J 2004 Phys. Rev. A 70 033607 |
[10] | Zong F D and Zhang J F 2008 Chin. Phys. Lett. 25 2370 |
[11] | Liu X, Pu H, Xiong B, Liu W M, and Gong J 2009 Phys. Rev. A 79 013423 |
[12] | Abdullaev F K, Caputo J G, Kraenkel R A, and Malomed B A 2003 Phys. Rev. A 67 013605 |
[13] | Staliunas K, Longhi S, and de Valcárcel G J 2002 Phys. Rev. Lett. 89 210406 |
[14] | Pollack S E, Dries D, Hulet R G, Magalh A K M F, Henn E A L, Ramos E R F, Caracanhas M A, and Bagnato V S 2010 Phys. Rev. A 81 053627 |
[15] | Vidanović I, Balaž A, Al-Jibbouri H, and Pelster A 2011 Phys. Rev. A 84 013618 |
[16] | Clark L W, Gaj A, Feng L, and Chin C 2017 Nature 551 356 |
[17] | Fu H, Feng L, Anderson B M, Clark L W, Hu J, Andrade J W, Chin C, and Levin K 2018 Phys. Rev. Lett. 121 243001 |
[18] | Wu Z and Zhai H 2019 Phys. Rev. A 99 063624 |
[19] | Mežnaršič T, Žitko R, Arh T, Gosar K, Zupanič E, and Jeglič P 2020 Phys. Rev. A 101 031601 |
[20] | Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81 |
[21] | Kivshar Y S, Christou J, Tikhonenko V, Luther-Davies B, and Pismen L M 1998 Opt. Commun. 152 198 |
[22] | Kivotides D, Barenghi C F, and Samuels D C 2000 Science 290 777 |
[23] | Bai W K, Yang T, and Liu W M 2020 Phys. Rev. A 102 063318 |
[24] | Kopnin N B 2002 Rep. Prog. Phys. 65 1633 |
[25] | Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, and Lewenstein M 1999 Phys. Rev. Lett. 83 5198 |
[26] | Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I, and Phillips W D 2000 Science 287 97 |
[27] | Fritsch A R, Lu M, Reid G H, Pi N A M, and Spielman I B 2020 Phys. Rev. A 101 053629 |
[28] | Dutton Z, Budde M, Slowe C, and Hau L V 2001 Science 293 663 |
[29] | Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G, and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401 |
[30] | Yang T, Xiong B, and Benedict K A 2013 Phys. Rev. A 87 023603 |
[31] | Xiong B, Yang T, and Benedict K A 2013 Phys. Rev. A 88 043602 |
[32] | Halperin E J and Bohn J L 2020 Phys. Rev. Res. 2 043256 |
[33] | Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502 |
[34] | Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A, and Ji A C 2016 Phys. Rev. A 94 061602 |
[35] | Kivshar Y S and Pelinovsky D E 2000 Phys. Rep. 331 117 |
[36] | Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A, and Kivshar Y S 2003 Phys. Rev. Lett. 90 120403 |
[37] | Wang W, Kevrekidis P G, Carretero-González R, Frantzeskakis D J, Kaper T J, and Ma M 2015 Phys. Rev. A 92 033611 |
[38] | Song S W, Wang D S, Wang H, and Liu W M 2012 Phys. Rev. A 85 063617 |
[39] | Hu X H, Zhang X F, Zhao D, Luo H G, and Liu W M 2009 Phys. Rev. A 79 023619 |
[40] | Wang W, Kolokolnikov T, Frantzeskakis D J, Carretero-González R, and Kevrekidis P G 2021 Phys. Rev. A 104 023314 |
[41] | Yang S J, Wu Q S, Zhang S N, Feng S, Guo W, Wen Y C, and Yu Y 2007 Phys. Rev. A 76 063606 |
[42] | Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P, and Hadzibabic Z 2013 Phys. Rev. Lett. 110 200406 |
[43] | Jaouadi A, Gaaloul N, de Viaris L B, Telmini M, Pruvost L, and Charron E 2010 Phys. Rev. A 82 023613 |
[44] | Parker N G, Proukakis N P, Leadbeater M, and Adams C S 2003 J. Phys. B 36 2891 |
[45] | Cornish S L, Parker N G, Martin A M, Judd T E, Scott R G, Fromhold T M, and Adams C S 2009 Physica D 238 1299 |
[46] | Ruostekoski J, Kneer B, Schleich W P, and Rempe G 2001 Phys. Rev. A 63 043613 |
[47] | Simula T, Davis M J, and Helmerson K 2014 Phys. Rev. Lett. 113 165302 |
[48] | Groszek A J, Simula T P, Paganin D M, and Helmerson K 2016 Phys. Rev. A 93 043614 |
[49] | Huang G, Makarov V A, and Velarde M G 2003 Phys. Rev. A 67 023604 |
[50] | Baizakov B B, Malomed B A, and Salerno M 2006 Phys. Rev. E 74 066615 |
[51] | Cheng Q L, Bai W K, Zhang Y Z, Xiong B, and Yang T 2019 Laser Phys. 29 015501 |
[52] | Zhang X F, Hu X H, Wang D S, Liu X X, and Liu W M 2011 Front. Phys. Chin. 6 46 |
[53] | Wang D M, Xing J C, Du R, Xiong B, and Yang T 2021 Chin. Phys. B 30 120303 |
[54] | Verma G, Rapol U D, and Nath R 2017 Phys. Rev. A 95 043618 |
[55] | Haberichter M, Kevrekidis P G, Carretero-González R, and Edwards M 2019 Phys. Rev. A 99 053619 |
[56] | Yang T, Henning A J, and Benedict K A 2014 J. Phys. B 47 035302 |
[57] | Sciacca M, Barenghi C F, and Parker N G 2017 Phys. Rev. A 95 013628 |
[58] | Clifford M A, Arlt J, Courtial J, and Dholakia K 1998 Opt. Commun. 156 300 |
[59] | Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 |
[60] | Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, and Zhang X F 2018 Phys. Rev. A 97 063607 |
[61] | Yang T, Hu Z Q, Zou S, and Liu W M 2016 Sci. Rep. 6 29066 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|