GENERAL |
|
|
|
|
Phonon Stability of Quantum Droplets in Dipolar Bose Gases |
Fan Zhang and Lan Yin* |
School of Physics, Peking University, Beijing 100871, China |
|
Cite this article: |
Fan Zhang and Lan Yin 2022 Chin. Phys. Lett. 39 060301 |
|
|
Abstract Stabilized by quantum fluctuations, dipolar Bose–Einstein condensates can form self-bound liquid-like droplets. However in the Bogoliubov theory, there are imaginary phonon energies in the long-wavelength limit, implying dynamical instability of this system. A similar instability appears in the Bogoliubov theory of a binary quantum droplet, and is removed due to higher-order quantum fluctuations as shown recently [Gu Q and Yin L 2020 Phys. Rev. B 102 220503(R)]. We study the excitation energy of a dipolar quantum droplet in the Beliaev formalism, and find that quantum fluctuations significantly enhance the phonon stability. We adopt a self-consistent approach without the problem of complex excitation energy in the Bogoliubov theory, and obtain a stable anisotropic sound velocity which is consistent with the superfluid hydrodynamic theory, but slightly different from the result of the extended Gross–Pitaevskii equation due to quantum depletion. A modified Gross–Pitaevskii equation in agreement with the Beliaev theory is proposed, which takes the effect of quantum fluctuations into account more completely.
|
|
Received: 07 April 2022
Editors' Suggestion
Published: 29 May 2022
|
|
PACS: |
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
67.85.De
|
(Dynamic properties of condensates; excitations, and superfluid flow)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
|
|
|
[1] | Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, and Pfau T 2016 Nature 530 194 |
[2] | Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, and Pfau T 2016 Phys. Rev. Lett. 116 215301 |
[3] | Ferrier-Barbut I, Schmitt M, Wenzel M, Kadau H, and Pfau T 2016 J. Phys. B 49 214004 |
[4] | Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I, and Pfau T 2016 Nature 539 259 |
[5] | Wenzel M, Böttcher F, Langen T, Ferrier-Barbut I, and Pfau T 2017 Phys. Rev. A 96 053630 |
[6] | Chomaz L, Baier S, Petter D, Mark M, Wächtler F, Santos L, and Ferlaino F 2016 Phys. Rev. X 6 041039 |
[7] | Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, and Tarruell L 2018 Science 359 301 |
[8] | Cheiney P, Cabrera C, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301 |
[9] | Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M, and Fattori M 2018 Phys. Rev. Lett. 120 235301 |
[10] | D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F, and Fort C 2019 Phys. Rev. Res. 1 033155 |
[11] | Bisset R, Ardila L P N, and Santos L 2021 Phys. Rev. Lett. 126 025301 |
[12] | Smith J C, Baillie D, and Blakie P 2021 Phys. Rev. Lett. 126 025302 |
[13] | Lee T D, Huang K, and Yang C N 1957 Phys. Rev. 106 1135 |
[14] | Petrov D S 2015 Phys. Rev. Lett. 115 155302 |
[15] | Lima A R and Pelster A 2012 Phys. Rev. A 86 063609 |
[16] | Bombin R, Boronat J, and Mazzanti F 2017 Phys. Rev. Lett. 119 250402 |
[17] | Tanzi L, Lucioni E, Famà F, Catani J, Fioretti A, Gabbanini C, Bisset R N, Santos L, and Modugno G 2019 Phys. Rev. Lett. 122 130405 |
[18] | Roccuzzo S M and Ancilotto F 2019 Phys. Rev. A 99 041601 |
[19] | Böttcher F, Schmidt J N, Wenzel M, Hertkorn J, Guo M, Langen T, and Pfau T 2019 Phys. Rev. X 9 011051 |
[20] | Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F, Jamison A O, and Ketterle W 2017 Nature 543 91 |
[21] | Léonard J, Morales A, Zupancic P, Esslinger T, and Donner T 2017 Nature 543 87 |
[22] | Xiong Y and Yin L 2021 Chin. Phys. Lett. 38 070301 |
[23] | Wang J B, Pan J S, Cui X, and Yi W 2020 Chin. Phys. Lett. 37 076701 |
[24] | Wächtler F and Santos L 2016 Phys. Rev. A 94 043618 |
[25] | Baillie D, Wilson R, Bisset R, and Blakie P 2016 Phys. Rev. A 94 021602 |
[26] | Petrov D and Astrakharchik G 2016 Phys. Rev. Lett. 117 100401 |
[27] | Kartashov Y V, Malomed B A, and Torner L 2019 Phys. Rev. Lett. 122 193902 |
[28] | Saito H 2016 J. Phys. Soc. Jpn. 85 053001 |
[29] | Macia A, Sánchez-Baena J, Boronat J, and Mazzanti F 2016 Phys. Rev. Lett. 117 205301 |
[30] | Cinti F, Cappellaro A, Salasnich L, and Macrı̀ T 2017 Phys. Rev. Lett. 119 215302 |
[31] | Böttcher F, Wenzel M et al. 2019 Phys. Rev. Res. 1 033088 |
[32] | Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302 |
[33] | Wang Y, Guo L, Yi S, and Shi T 2020 Phys. Rev. Res. 2 043074 |
[34] | Gu Q and Yin L 2020 Phys. Rev. B 102 220503 |
[35] | Beliaev S 1958 Sov. Phys.-JETP 7 299 |
[36] | Lahaye T, Menotti C, Santos L, Lewenstein M, and Pfau T 2009 Rep. Prog. Phys. 72 126401 |
[37] | Schützhold R, Uhlmann M, Xu Y, and Fischer U R 2006 Int. J. Mod. Phys. B 20 3555 |
[38] | Hugenholtz N and Pines D 1959 Phys. Rev. 116 489 |
[39] | Bisset R, Wilson R, Baillie D, and Blakie P 2016 Phys. Rev. A 94 033619 |
[40] | Baillie D, Wilson R, and Blakie P 2017 Phys. Rev. Lett. 119 255302 |
[41] | Aybar E and Oktel M 2019 Phys. Rev. A 99 013620 |
[42] | Xiong Y and Yin L 2022 Phys. Rev. A 105 053305 |
[43] | Natale G, van Bijnen R, Patscheider A, Petter D, Mark M, Chomaz L, and Ferlaino F 2019 Phys. Rev. Lett. 123 050402 |
[44] | Pastukhov V 2017 Phys. Rev. A 95 023614 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|