Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 051201    DOI: 10.1088/0256-307X/39/5/051201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
QCD Axial Anomaly Enhances the $\eta \eta^\prime$ Decay of the Hybrid Candidate $\eta_1(1855)$
Hua-Xing Chen1*, Niu Su1*, and Shi-Lin Zhu2*
1School of Physics, Southeast University, Nanjing 210094, China
2School of Physics and Center of High Energy Physics, Peking University, Beijing 100871, China
Cite this article:   
Hua-Xing Chen, Niu Su, and Shi-Lin Zhu 2022 Chin. Phys. Lett. 39 051201
Download: PDF(520KB)   PDF(mobile)(653KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the hybrid mesons with the exotic quantum number $I^{\rm G}J^{\rm PC} = 0^+1^{-+}$ and investigate their decays into the $\eta \eta^\prime$, $a_1(1260) \pi$, $f_1(1285) \eta$, $f_1(1420) \eta$, $K^*(892) \overline{K}$, $K_1(1270) \overline{K}$, and $K_1(1400) \overline{K}$ channels. It is found that the QCD axial anomaly enhances the decay width of the $\eta \eta^\prime$ channel although this mode is strongly suppressed by the small p-wave phase space. Our results support the interpretation of the $\eta_1(1855)$ recently observed by BESIII as the $\bar s s g$ hybrid meson of $I^{\rm G}J^{\rm PC}=0^+1^{-+}$. The QCD axial anomaly ensures the $\eta \eta^\prime$ decay mode to be a characteristic signal of the hybrid nature of the $\eta_1(1855)$.
Received: 15 February 2022      Editors' Suggestion Published: 29 April 2022
PACS:  12.39.Mk (Glueball and nonstandard multi-quark/gluon states)  
  11.40.-q (Currents and their properties)  
  12.38.Lg (Other nonperturbative calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/051201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I5/051201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hua-Xing Chen
Niu Su
and Shi-Lin Zhu
[1] Ablikim M et al. (BESIII Collaboration) 2022 arXiv:2202.00621 [hep-ex]
[2] Ablikim M et al. (BESIII Collaboration) 2022 arXiv:2202.00623 [hep-ex]
[3] Adams G S et al. (E852 Collaboration) 1998 Phys. Rev. Lett. 81 5760
[4] Alde D et al. (IHEP-Brussels-Los Alamos-Annecy(LAPP) Collaboration) 1988 Phys. Lett. B 205 397
[5] Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01
[6] Barnes T 1979 Nucl. Phys. B 158 171
[7] Hasenfratz P, Horgan R R, Kuti J, and Richard J M 1980 Phys. Lett. B 95 299
[8] Chanowitz M S and Sharpe S R 1983 Nucl. Phys. B 222 211 [Erratum: 1983 Nucl. Phys. B 228 588]
[9] Isgur N and Paton J E 1983 Phys. Lett. B 124 247
[10] Close F E and Page P R 1995 Nucl. Phys. B 443 233
[11] Page P R, Swanson E S, and Szczepaniak A P 1999 Phys. Rev. D 59 034016
[12] Horn D and Mandula J 1978 Phys. Rev. D 17 898
[13] Szczepaniak A P and Swanson E S 2001 Phys. Rev. D 65 025012
[14] Guo P, Szczepaniak A P, Galata G, Vassallo A, and Santopinto E 2008 Phys. Rev. D 77 056005
[15] Andreev O 2013 Phys. Rev. D 87 065006
[16] Bellantuono L, Colangelo P, and Giannuzzi F 2014 Eur. Phys. J. C 74 2830
[17] Michael C 1985 Nucl. Phys. B 259 58
[18] Lacock P et al. (UKQCD Collaboration) 1997 Phys. Lett. B 401 308
[19] Bernard C W et al. (MILC Collaboration) 1997 Phys. Rev. D 56 7039
[20] Juge K J, Kuti J, and Morningstar C 2003 Phys. Rev. Lett. 90 161601
[21] Dudek J J, Edwards R G, Peardon M J, Richards D G, and Thomas C E 2009 Phys. Rev. Lett. 103 262001
[22] Dudek J J et al. (Hadron Spectrum Collaboration) 2013 Phys. Rev. D 88 094505
[23] Balitsky I I, Diakonov D, and Yung A V 1982 Phys. Lett. B 112 71
[24] Govaerts J, de Viron F, Gusbin D, and Weyers J 1983 Phys. Lett. B 128 262 [Erratum: 1984 Phys. Lett. B 136 445]
[25] Kisslinger L S and Li Z P 1995 Phys. Rev. D 51 R5986
[26] Jin H Y, Korner J G, and Steele T G 2003 Phys. Rev. D 67 014025
[27] Narison S 2009 Phys. Lett. B 675 319
[28] Li S H, Chen Z S, Jin H Y, and Chen W 2022 Phys. Rev. D 105 054030
[29] Coyne J J, Fishbane P M, and Meshkov S 1980 Phys. Lett. B 91 259
[30] Chanowitz M S 1981 Phys. Rev. Lett. 46 981
[31] Barnes T 1981 Z. Phys. C 10 275
[32] Cornwall J M and Soni A 1983 Phys. Lett. B 120 431
[33] Cho Y M, Pham X Y, Zhang P, Xie J J, and Zou L P 2015 Phys. Rev. D 91 114020
[34] Klempt E and Zaitsev A 2007 Phys. Rep. 454 1
[35] Amsler C and Tornqvist N A 2004 Phys. Rep. 389 61
[36] Bugg D V 2004 Phys. Rep. 397 257
[37] Meyer C A and Van Haarlem Y 2010 Phys. Rev. C 82 025208
[38] Meyer C A and Swanson E S 2015 Prog. Part. Nucl. Phys. 82 21
[39] Chen H X, Chen W, Liu X, and Zhu S L 2016 Phys. Rep. 639 1
[40] Briceno R A, Dudek J J, and Young R D 2018 Rev. Mod. Phys. 90 025001
[41] Ketzer B, Grube B, and Ryabchikov D 2020 Prog. Part. Nucl. Phys. 113 103755
[42] Jin S and Shen X 2021 Natl. Sci. Rev. 8 nwab198
[43] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2022 arXiv:2204.02649 [hep-ph]
[44] Aghasyan M et al. (COMPASS Collaboration) 2018 Phys. Rev. D 98 092003
[45] Rodas A et al. (JPAC Collaboration) 2019 Phys. Rev. Lett. 122 042002
[46] Qiu L and Zhao Q 2022 arXiv:2202.00904 [hep-ph]
[47] Dong X K, Lin Y H, and Zou B S 2022 arXiv:2202.00863 [hep-ph]
[48] Zhang X and Xie J J 2020 Chin. Phys. C 44 054104
[49] Chen H X, Hosaka A, and Zhu S L 2008 Phys. Rev. D 78 117502
[50] Huang P Z, Chen H X, and Zhu S L 2011 Phys. Rev. D 83 014021
[51] Chen H X, Cai Z X, Huang P Z, and Zhu S L 2011 Phys. Rev. D 83 014006
[52] Page P R 1997 Phys. Lett. B 402 183
[53] Voloshin M B and Zakharov V I 1980 Phys. Rev. Lett. 45 688
[54] Akhoury R and Frere J M 1989 Phys. Lett. B 220 258
[55] Castoldi P and Frere J M 1988 Z. Phys. C 40 283
[56] Chao K T 1989 Nucl. Phys. B 317 597
[57] Ball P, Frere J M, and Tytgat M 1996 Phys. Lett. B 365 367
[58] Ali A, Chay J, Greub C, and Ko P 1998 Phys. Lett. B 424 161
[59] Leutwyler H 1998 Nucl. Phys. B Proc. Suppl. 64 223
[60] Kaiser R and Leutwyler H 1998 arXiv:hep-ph/9806336
[61] Escribano R and Frere J M 2005 J. High Energy Phys. 2005(06) 029
[62] Escribano R, Masjuan P, and Sanchez-Puertas P 2015 Eur. Phys. J. C 75 414
[63] Escribano R, Gonzàlez-Solı́s S, Masjuan P, and Sanchez-Puertas P 2016 Phys. Rev. D 94 054033
[64] Schechter J, Subbaraman A, and Weigel H 1993 Phys. Rev. D 48 339
[65] Kiselev A V and Petrov V A 1993 Z. Phys. C 58 595
[66] Herrera-Siklody P, Latorre J I, Pascual P, and Taron J 1998 Phys. Lett. B 419 326
[67] Bass S D and Moskal P 2019 Rev. Mod. Phys. 91 015003
[68] Bali G S et al. (RQCD Collaboration) 2021 J. High Energy Phys. 2021(08) 137
[69] Feldmann T and Kroll P 1998 Eur. Phys. J. C 5 327
[70] Yang K C 2007 Nucl. Phys. B 776 187
[71] Shifman M A, Vainshtein A I, and Zakharov V I 1979 Nucl. Phys. B 147 385
[72] Reinders L J, Rubinstein H, and Yazaki S 1985 Phys. Rep. 127 1
[73] Chen H X, Chen W, and Zhu S L 2021 Phys. Rev. D 103 L091503
[74] Chen H X, Chen W, and Zhu S L 2021 Phys. Rev. D 104 094050
[75] Chen H X, Chen W, and Zhu S L 2022 Phys. Rev. D 105 L051501
[76] Narison S 1989 World Scientific Lecture Notes in Physics (Singapore: World Scientific) vol 26 pp 1–527
[77] Zhu S L 1999 Phys. Rev. D 60 097502
[78] Zhu S L, Hwang W Y P, and Yang Z S 1998 Phys. Lett. B 420 8
[79]Ovchinnikov A A and Pivovarov A A 1988 Sov. J. Nucl. Phys. 48 721
[80] Yang K C, Hwang W Y P, Henley E M, and Kisslinger L S 1993 Phys. Rev. D 47 3001
[81] Ellis J R, Gardi E, Karliner M, and Samuel M A 1996 Phys. Rev. D 54 6986
[82] Jamin M 2002 Phys. Lett. B 538 71
[83] Ioffe B L and Zyablyuk K N 2003 Eur. Phys. J. C 27 229
[84] Gimenez V, Lubicz V, Mescia F, Porretti V, and Reyes J 2005 Eur. Phys. J. C 41 535
[85] Narison S 2012 Phys. Lett. B 706 412
[86] Narison S 2018 Int. J. Mod. Phys. A 33 1850045
[87] Becirevic D, Lubicz V, Mescia F, and Tarantino C 2003 J. High Energy Phys. 2003(05) 007
Related articles from Frontiers Journals
[1] Hua-Xing Chen, Wei Chen, Rui-Rui Dong, and Niu Su. $X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks[J]. Chin. Phys. Lett., 2020, 37(10): 051201
[2] ZHANG Zhu-Feng, JIN Hong-Ying, T. G. Steele. Revisiting 1?+ Light Hybrid from Monte-Carlo Based QCD Sum Rules[J]. Chin. Phys. Lett., 2014, 31(05): 051201
[3] LI Jiang, LIAO Xiao-Tao, YANG Ming, YANG Hong-Xun, XU Min, ZHANG Bing-Xin, SHEN Xiao-Yan, YANG Yong-Xu. Determination of J/φ Event Number via J/φ→μ+μ- and J/φ→ e+e- at BESIII[J]. Chin. Phys. Lett., 2010, 27(4): 051201
[4] BIAN Jian-Ming, SHEN Xiao-Yan, LI Wei-Guo. J/ψ Inclusive Photon Spectrum at BESIII[J]. Chin. Phys. Lett., 2009, 26(4): 051201
[5] JIN Hong-Ying, LIU Shao-Min, ZHANG Zhu-Feng, LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays[J]. Chin. Phys. Lett., 2008, 25(5): 051201
[6] QIN Hu, SHEN Xiao-Yan. Monte Carlo Simulation on Glueball Search at BESIII[J]. Chin. Phys. Lett., 2007, 24(7): 051201
[7] XIA Zheng-Tong, WANG Shun-Jin. Chiral Lagrangian Treatment of 0++ Mesons and 0++ Glueballs[J]. Chin. Phys. Lett., 2007, 24(3): 051201
[8] ZHANG Zhen-Yu, LIU Jue-Ping. Stabilization and Consistency for Subtracted and Unsubtracted QCD Sum Rules for 0++ Scalar Glueball[J]. Chin. Phys. Lett., 2006, 23(11): 051201
[9] HUANG Hong-Xia, GONG Li-Ying, PING Jia-Lun,. Diquark Structure of Pentaquark in the Quark Delocalization Colour Screening Model[J]. Chin. Phys. Lett., 2005, 22(11): 051201
[10] PENG Hong-An, DUAN Chun-Gui, HE Zhen-Min . Inclusive Glueball Production in High-Energy p+p(P) Collisions[J]. Chin. Phys. Lett., 2001, 18(8): 051201
[11] LIU Chuan. A Lattice Study of the Glueball Spectrum[J]. Chin. Phys. Lett., 2001, 18(2): 051201
[12] PENG Hong-An, XU Jia-Sheng. Some Comments on the Frame of Regge Phenomenology and the Glueball Production Mechanism[J]. Chin. Phys. Lett., 2000, 17(12): 051201
[13] ZHANG Jian-bo, JIN Min, JI Da-ren. Estimates of SU(2) Glueballs on a Coarse, Anisotropic Lattice[J]. Chin. Phys. Lett., 1998, 15(12): 051201
Viewed
Full text


Abstract