Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047601    DOI: 10.1088/0256-307X/39/4/047601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor
Haodong Wang1,2†, Peihan Lei1,2†, Xiaoyu Mao1,3†, Xi Kong4*, Xiangyu Ye1,2, Pengfei Wang1,2, Ya Wang1,2, Xi Qin1,2, Jan Meijer5, Hualing Zeng1,3*, Fazhan Shi1,2, and Jiangfeng Du1,2*
1Hefei National Laboratory for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
3CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
5Felix-Bloch Institute for Solid State Physics, University Leipzig, Linné Str. 5, D-04103 Leipzig, Germany
Cite this article:   
Haodong Wang, Peihan Lei, Xiaoyu Mao et al  2022 Chin. Phys. Lett. 39 047601
Download: PDF(1320KB)   PDF(mobile)(1573KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, magnetism in two-dimensional (2D) van der Waals (vdW) materials has attracted wide interests. It is anticipated that these materials will stimulate discovery of new physical phenomena and novel applications. The capability to quantitatively measure the magnetism of 2D magnetic vdW materials is essential to understand these materials. Here we report on quantitative measurements of ferromagnetic-to-paramagnetic phase transition of an atomically thin (down to 11 nm) vdW magnet, namely CrBr$_3$, with a Curie point of 37.5 K. This experiment demonstrates that surface magnetism can be quantitatively investigated, which is useful for a wide variety of potential applications.
Received: 02 December 2021      Published: 28 March 2022
PACS:  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  03.65.-w (Quantum mechanics)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/047601       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/047601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haodong Wang
Peihan Lei
Xiaoyu Mao
Xi Kong
Xiangyu Ye
Pengfei Wang
Ya Wang
Xi Qin
Jan Meijer
Hualing Zeng
Fazhan Shi
and Jiangfeng Du
[1] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C, and Xu X 2017 Sci. Adv. 3 e1603113
[2] Park J G 2016 J. Phys.: Condens. Matter 28 301001
[3] Samarth N 2017 Nature 546 216
[4] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science 360 1214
[5] Cheng G and Xiang Z 2019 Science 363 eaav4450
[6] Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[7] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[8] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[9] Burch K S, Mandrus D, and Park J G 2018 Nature 563 47
[10] Hao Y, Gu Y, Gu Y, Feng E, Cao H, Chi S, Wu H, and Zhao J 2021 Chin. Phys. Lett. 38 096101
[11] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94
[12] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544
[13] Jiang S, Li L, Wang Z, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549
[14] Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y, and Ji W 2019 Phys. Rev. B 99 144401
[15] Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J H, Cobden D H, Dean C R, Xiao D, and Xu X 2019 Nat. Mater. 18 1298
[16] Sivadas N, Okamoto S, Xu X, Fennie C J, and Xiao D 2018 Nano Lett. 18 7658
[17] Zhang Z, Shang J, Jiang C, Rasmita A, Gao W, and Yu T 2019 Nano Lett. 19 3138
[18] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, and Gao C 2019 Science 366 983
[19] Zhang W B, Qu Q, Zhu P, and Lam C H 2015 J. Mater. Chem. C 3 12457
[20] Lovchinsky I, Sanchez-Yamagishi J D, Urbach E K, Choi S, Fang S, Andersen T I, Watanabe K, Taniguchi T, Bylinskii A, Kaxiras E, Kim P, Park H, and Lukin M D 2017 Science 355 503
[21] Fabre F, Finco A, Purbawati A, Hadj-Azzem A, Rougemaille N, Coraux J, Philip I, and Jacques V 2021 Phys. Rev. Mater. 5 034008
[22] Broadway D A, Scholten S C, Tan C, Dontschuk N, Lillie S E, Johnson B C, Zheng G, Wang Z, Oganov A R, Tian S, Li C, Lei H, Wang L, Hollenberg L C L, and Tetienne J P 2020 Adv. Mater. 32 2003314
[23] Nelz R, Radtke M, Slablab A, Xu Z Q, Kianinia M, Li C, Bradac C, Aharonovich I, and Neu E 2020 Adv. Quantum Technol. 3 1900088
[24] Shang Y X, Hong F, Dai J H, Lu Y N, Liu E K, Yu X H, Liu G Q, and Pan X Y 2019 Chin. Phys. Lett. 36 086201
[25] Gross I, Akhtar W, Garcia V, Martínez L J, Chouaieb S, Garcia K, Carrétéro C, Barthélémy A, Appel P, Maletinsky P, Kim J V, Chauleau J Y, Jaouen N, Viret M, Bibes M, Fusil S, and Jacques V 2017 Nature 549 252
[26] Wang C J, Li R, Ding B, Wang P, Wang W, Wang M, Guo M, Duan C K, Shi F, and Du J 2020 Appl. Phys. Lett. 116 184001
[27] Zhou B B, Jerger P C, Lee K H, Fukami M, Mujid F, Park J, and Awschalom D D 2020 Phys. Rev. X 10 011003
[28] Vool U, Hamo A, Varnavides G, Wang Y, Zhou T X, Kumar N, Dovzhenko Y, Qiu Z, Garcia C A C, Pierce A T, Gooth J, Anikeeva P, Felser C, Narang P, and Yacoby A 2021 Nat. Phys. 17 1216
[29] Solyom A, Flansberry Z, Tschudin M A, Leitao N, Pioro-Ladrière M, Sankey J C, and Childress L I 2018 Nano Lett. 18 6494
[30] Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, and Maletinsky P 2019 Science 364 973
[31] Sun Q C, Song T, Anderson E, Brunner A, Förster J, Shalomayeva T, Taniguchi T, Watanabe K, Gräfe J, Stöhr R, Xu X, and Wrachtrup J 2021 Nat. Commun. 12 1989
[32] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[33] Tsubokawa I 1960 J. Phys. Soc. Jpn. 15 1664
[34] Haykal A, Fischer J, Akhtar W, Chauleau J Y, Sando D et al. 2020 Nat. Commun. 11 1
[35] Finco A, Haykal A, Tanos R, Fabre F, Chouaieb S et al. 2021 Nat. Commun. 12 1
Related articles from Frontiers Journals
[1] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 047601
[2] Wen-Hao He, Ming-Ming Dong, Zhen-Zhong Hu, Qi-Han Zhang, Bo Yang, Ying Liu, Xiao-Long Fan, Guan-Xiang Du. High Resolution Microwave B-Field Imaging Using a Micrometer-Sized Diamond Sensor[J]. Chin. Phys. Lett., 2019, 36(12): 047601
[3] Yan-Xing Shang, Fang Hong, Jian-Hong Dai, Hui-Yu, Ya-Nan Lu, En-Ke Liu, Xiao-Hui Yu, Gang-Qin Liu, Xin-Yu Pan. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins[J]. Chin. Phys. Lett., 2019, 36(8): 047601
[4] ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen. Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State[J]. Chin. Phys. Lett., 2015, 32(06): 047601
[5] HUANG Kai-Kai, LI Nan, LU Xuan-Hui. A High Sensitivity Laser-Pumped Cesium Magnetometer[J]. Chin. Phys. Lett., 2012, 29(10): 047601
Viewed
Full text


Abstract