Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047402    DOI: 10.1088/0256-307X/39/4/047402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation
Yutao Jiang1,2†, Ze Yu1,2†, Yuxin Wang1,2, Tenglong Lu1,2, Sheng Meng1,2,3*, Kun Jiang1,3*, and Miao Liu1,3,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Yutao Jiang, Ze Yu, Yuxin Wang et al  2022 Chin. Phys. Lett. 39 047402
Download: PDF(2865KB)   PDF(mobile)(4331KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The CsV$_{3}$Sb$_{5}$ kagome lattice holds the promise for manifesting electron correlation, topology and superconductivity. However, by far only three CsV$_{3}$Sb$_{5}$-like kagome materials have been experimentally spotted. We enlarge this family of materials to 1386 compounds via element species substitution, and the further screening process suggests that 28 promising candidates have superior thermodynamic stability, hence they are highly likely to be synthesizable. Moreover, these compounds possess several unique electronic structures, and can be categorized into five non-magnetic and three magnetic groups accordingly. It is our hope that this work can greatly expand the viable phase space of the CsV$_{3}$Sb$_{5}$-like materials for investigating or tuning the novel quantum phenomena in kagome lattice.
Received: 01 March 2022      Express Letter Published: 11 March 2022
PACS:  74.25.-q (Properties of superconductors)  
  74.70.Ad (Metals; alloys and binary compounds)  
  71.15.Nc (Total energy and cohesive energy calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/047402       OR      https://cpl.iphy.ac.cn/Y2022/V39/I4/047402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yutao Jiang
Ze Yu
Yuxin Wang
Tenglong Lu
Sheng Meng
Kun Jiang
and Miao Liu
[1] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[2] Balents L 2010 Nature 464 199
[3] Jiang K, Wu T, Yin J X et al. 2021 arXiv:2109.10809 [cond-mat.supr-con]
[4] Yin J X, Zhang S S, Li H et al. 2018 Nature 562 91
[5] Ye L, Kang M, Liu J et al. 2018 Nature 555 638
[6] Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125
[7] Liu D F, Liang A J, Liu E K et al. 2019 Science 365 1282
[8] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286
[9] Ortiz B R, Teicher S M L, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002
[10] Ortiz B R, Gomes L C, Morey J R et al. 2019 Phys. Rev. Mater. 3 094407
[11] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[12] Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403
[13] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245
[14] Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con]
[15] Chen H, Yang H, Hu B et al. 2021 Nature 599 222
[16] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature (in press)
[17] Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, and Luo J 2021 Chin. Phys. Lett. 38 077402
[18] Ni S, Ma S, Zhang Y et al. 2021 Chin. Phys. Lett. 38 057403
[19] Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402
[20]Atomly https://atomly.net/
[21] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[22] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798
[28] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314
[29] Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, and Persson K A 2015 Energy & Environ. Sci. 8 964
[30] Ong S P, Jain A, Hautier G, Kang B, and Ceder G 2010 Electrochem. Commun. 12 427
[31] Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225
[32] Barber C B, Dobkin D P, and Huhdanpaa H 1996 ACM Trans. Math. Software 22 469
[33] Villain J, Bidaux R, Carton J P, and Conte R 1980 J. Phys. France 41 1263
[34] Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205
[35]ICSD https://icsd.products.fiz-karlsruhe.de/
[36] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 11002
[37] Yang H, Zhang Y, Huang Z et al. 2021 arXiv:2110.11228 [cond-mat.supr-con]
[38] Oey Y M, Ortiz B R, Kaboudvand F et al. 2021 arXiv:2110.10912 [cond-mat.supr-con]
[39] Shi M, Yu F, Yang Y, Meng F et al. 2021 arXiv:2110.09782 [cond-mat.supr-con]
[40] Yin Q, Tu Z, Gong C, Tian S, and Lei H 2021 Chin. Phys. Lett. 38 127401
[41] Yang Y, Fan W, Zhang Q et al. 2021 Chin. Phys. Lett. 38 127102
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 047402
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 047402
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 047402
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 047402
[5] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 047402
[6] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 047402
[7] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 047402
[8] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 047402
[9] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 047402
[10] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 047402
[11] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 047402
[12] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 047402
[13] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 047402
[14] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 047402
[15] Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl[J]. Chin. Phys. Lett., 2018, 35(9): 047402
Viewed
Full text


Abstract