CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation |
Yutao Jiang1,2†, Ze Yu1,2†, Yuxin Wang1,2, Tenglong Lu1,2, Sheng Meng1,2,3*, Kun Jiang1,3*, and Miao Liu1,3,4* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Yutao Jiang, Ze Yu, Yuxin Wang et al 2022 Chin. Phys. Lett. 39 047402 |
|
|
Abstract The CsV$_{3}$Sb$_{5}$ kagome lattice holds the promise for manifesting electron correlation, topology and superconductivity. However, by far only three CsV$_{3}$Sb$_{5}$-like kagome materials have been experimentally spotted. We enlarge this family of materials to 1386 compounds via element species substitution, and the further screening process suggests that 28 promising candidates have superior thermodynamic stability, hence they are highly likely to be synthesizable. Moreover, these compounds possess several unique electronic structures, and can be categorized into five non-magnetic and three magnetic groups accordingly. It is our hope that this work can greatly expand the viable phase space of the CsV$_{3}$Sb$_{5}$-like materials for investigating or tuning the novel quantum phenomena in kagome lattice.
|
|
Received: 01 March 2022
Express Letter
Published: 11 March 2022
|
|
PACS: |
74.25.-q
|
(Properties of superconductors)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
|
|
|
[1] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 |
[2] | Balents L 2010 Nature 464 199 |
[3] | Jiang K, Wu T, Yin J X et al. 2021 arXiv:2109.10809 [cond-mat.supr-con] |
[4] | Yin J X, Zhang S S, Li H et al. 2018 Nature 562 91 |
[5] | Ye L, Kang M, Liu J et al. 2018 Nature 555 638 |
[6] | Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125 |
[7] | Liu D F, Liang A J, Liu E K et al. 2019 Science 365 1282 |
[8] | Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286 |
[9] | Ortiz B R, Teicher S M L, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002 |
[10] | Ortiz B R, Gomes L C, Morey J R et al. 2019 Phys. Rev. Mater. 3 094407 |
[11] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 |
[12] | Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403 |
[13] | Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245 |
[14] | Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con] |
[15] | Chen H, Yang H, Hu B et al. 2021 Nature 599 222 |
[16] | Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature (in press) |
[17] | Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, and Luo J 2021 Chin. Phys. Lett. 38 077402 |
[18] | Ni S, Ma S, Zhang Y et al. 2021 Chin. Phys. Lett. 38 057403 |
[19] | Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402 |
[20] | Atomly https://atomly.net/ |
[21] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[22] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[23] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[24] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[25] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[26] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[27] | Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798 |
[28] | Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314 |
[29] | Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, and Persson K A 2015 Energy & Environ. Sci. 8 964 |
[30] | Ong S P, Jain A, Hautier G, Kang B, and Ceder G 2010 Electrochem. Commun. 12 427 |
[31] | Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225 |
[32] | Barber C B, Dobkin D P, and Huhdanpaa H 1996 ACM Trans. Math. Software 22 469 |
[33] | Villain J, Bidaux R, Carton J P, and Conte R 1980 J. Phys. France 41 1263 |
[34] | Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205 |
[35] | ICSD https://icsd.products.fiz-karlsruhe.de/ |
[36] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 11002 |
[37] | Yang H, Zhang Y, Huang Z et al. 2021 arXiv:2110.11228 [cond-mat.supr-con] |
[38] | Oey Y M, Ortiz B R, Kaboudvand F et al. 2021 arXiv:2110.10912 [cond-mat.supr-con] |
[39] | Shi M, Yu F, Yang Y, Meng F et al. 2021 arXiv:2110.09782 [cond-mat.supr-con] |
[40] | Yin Q, Tu Z, Gong C, Tian S, and Lei H 2021 Chin. Phys. Lett. 38 127401 |
[41] | Yang Y, Fan W, Zhang Q et al. 2021 Chin. Phys. Lett. 38 127102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|