Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 037301    DOI: 10.1088/0256-307X/39/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene
Xiao-Feng Li1, Ruo-Xuan Sun1, Su-Yun Wang1, Xiao Li2, Zhi-Bo Liu1,3,4*, and Jian-Guo Tian1,3,4
1The Key Laboratory of Weak Light Nonlinear Photonics (Ministry of Education), School of Physics and Teda Applied Physics Institute, Nankai University, Tianjin 300071, China
2Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China
3Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
4The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang et al  2022 Chin. Phys. Lett. 39 037301
Download: PDF(2837KB)   PDF(mobile)(2993KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Twisted bilayer graphene (TBG), which has drawn much attention in recent years, arises from van der Waals materials gathering each component together via van der Waals force. It is composed of two sheets of graphene rotated relatively to each other. Moiré potential, resulting from misorientation between layers, plays an essential role in determining the band structure of TBG, which directly relies on the twist angle. Once the twist angle approaches a certain critical value, flat bands will show up, indicating the suppression of kinetic energy, which significantly enhances the importance of Coulomb interaction between electrons. As a result, correlated states like correlated insulators emerge from TBG. Surprisingly, superconductivity in TBG is also reported in many experiments, which drags researchers into thinking about the underlying mechanism. Recently, the interest in the atomic reconstruction of TBG at small twist angles comes up and reinforces further understandings of properties of TBG. In addition, twisted multilayer graphene receives more and more attention, as they could likely outperform TBG although they are more difficult to handle experimentally. In this review, we mainly introduce theoretical and experimental progress on TBG. Besides the basic knowledge of TBG, we emphasize the essential role of atomic reconstruction in both experimental and theoretical investigations. The consideration of atomic reconstruction in small-twist situations can provide us with another aspect to have an insight into physical mechanism in TBG. In addition, we cover the recent hot topic, twisted multilayer graphene. While the bilayer situation can be relatively easy to resolve, multilayer situations can be really complicated, which could foster more unique and novel properties. Therefore, in the end of the review, we look forward to future development of twisted multilayer graphene.
Received: 20 December 2021      Editors' Suggestion Published: 01 March 2022
PACS:  73.21.Cd (Superlattices)  
  61.48.Gh (Structure of graphene)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/037301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Feng Li
Ruo-Xuan Sun
Su-Yun Wang
Xiao Li
Zhi-Bo Liu
and Jian-Guo Tian
[1] Novoselov K S et al. 2004 Science 306 666
[2] Li X and Zhu H 2015 J. Materiomics 1 33
[3] Zhang G et al. 2019 Appl. Phys. Lett. 114 253102
[4] Gutiérrez H R et al. 2013 Nano Lett. 13 3447
[5] Massicotte M et al. 2018 Nat. Commun. 9 1633
[6] Feng J et al. 2018 Nano Lett. 18 4493
[7] Brem S et al. 2020 Nanoscale 12 11088
[8] Tran K et al. 2019 Nature 567 71
[9] Scuri G et al. 2020 Phys. Rev. Lett. 124 217403
[10] Ciarrocchi A et al. 2019 Nat. Photon. 13 131
[11] Dong X Y et al. 2019 J. Phys. Chem. Solids 134 1
[12] Förg M et al. 2021 Nat. Commun. 12 1656
[13] Karni O et al. 2019 Phys. Rev. Lett. 123 247402
[14] Li A et al. 2020 Chin. Phys. Lett. 37 107101
[15] Chu Z et al. 2020 Phys. Rev. Lett. 125 186803
[16] Gall M et al. 2021 Nature 589 40
[17] Mahapatra P S et al. 2020 Phys. Rev. Lett. 125 226802
[18] Mahapatra P S et al. 2017 Nano Lett. 17 6822
[19] Regan E C et al. 2020 Nature 579 359
[20] Zondiner U et al. 2020 Nature 582 203
[21] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
[22] Cao Y et al. 2018 Nature 556 80
[23] Codecido E et al. 2019 Sci. Adv. 5 eaaw9770
[24] Lu X et al. 2019 Nature 574 653
[25] Wu F and Sarma S D 2019 Phys. Rev. B 99 220507
[26] Lee D S et al. 2011 Phys. Rev. Lett. 107 216602
[27] Zhu Z et al. 2020 Phys. Rev. Lett. 125 116404
[28] Lei C et al. 2021 Phys. Rev. B 104 035139
[29] Carr S et al. 2020 Nano Lett. 20 3030
[30] Park J M et al. 2021 Nature 590 249
[31] Mora C et al. 2019 Phys. Rev. Lett. 123 026402
[32] Xu S et al. 2021 Nat. Phys. 17 619
[33] Yoo H et al. 2019 Nat. Mater. 18 448
[34] Lisi S et al. 2021 Nat. Phys. 17 189
[35] Cao Y et al. 2018 Nature 556 43
[36] Zuo W J et al. 2018 Phys. Rev. B 97 035440
[37] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[38] Shallcross S et al. 2013 Phys. Rev. B 87 245403
[39] Sboychakov A O et al. 2015 Phys. Rev. B 92 075402
[40] Li G et al. 2010 Nat. Phys. 6 109
[41]Catarina G et al. 2019 Handbook Graphene Set (Hoboken NJ: John Wiley & Sons Inc.) vol 3 chap 6 p 177
[42] Mogera U and Kulkarni G U 2020 Carbon 156 470
[43] Nimbalkar A and Kim H 2020 Nano-Micro Lett. 12 126
[44] Dos S J L et al. 2012 Phys. Rev. B 86 155449
[45] Shallcross S et al. 2008 Phys. Rev. Lett. 101 056803
[46] Yao W et al. 2018 Proc. Natl. Acad. Sci. USA 115 6928
[47] Kim K et al. 2017 Proc. Natl. Acad. Sci. USA 114 3364
[48] Uchida K et al. 2014 Phys. Rev. B 90 155451
[49] Zhang S et al. 2020 Sci. Adv. 6 eabc5555
[50] Mele E J 2010 Phys. Rev. B 81 161405
[51] Mele E J 2011 Phys. Rev. B 84 235439
[52]Scattering L D 2004 Molecular Light Scattering and Optical Activity 2nd edn (Cambridge: Cambridge University Press)
[53] Torsi L et al. 2008 Nat. Mater. 7 412
[54] Gohler B et al. 2011 Science 331 894
[55] Kim C J et al. 2016 Nat. Nanotechnol. 11 520
[56] Matsuo K and Gekko K 2004 Carbohydr. Res. 339 591
[57] Suárez M E et al. 2017 2D Mater. 4 035015
[58] Stauber T et al. 2018 Phys. Rev. Lett. 120 046801
[59] Addison Z et al. 2019 Phys. Rev. B 100 125418
[60] Yang F et al. 2020 Matter 3 1361
[61] Malard L M et al. 2013 Phys. Rev. B 87 201401
[62] Ha S et al. 2021 Light: Sci. & Appl. 10 19
[63] Mao X R et al. 2021 Nat. Nanotechnol. 16 1099
[64] Le S M et al. 2019 2D Mater. 7 011005
[65] Lu C C et al. 2013 ACS Nano 7 2587
[66] Campos-Delgado J et al. 2013 Nano Res. 6 269
[67] Righi A et al. 2011 Phys. Rev. B 84 241409
[68] Carozo V et al. 2013 Phys. Rev. B 88 085401
[69] Ni Z et al. 2008 Phys. Rev. B 77 235403
[70] Sato K et al. 2012 Phys. Rev. B 86 125414
[71] Havener R W et al. 2012 Nano Lett. 12 3162
[72] dos Santos J M B L et al. 2007 Phys. Rev. Lett. 99 256802
[73] de Trambly L G et al. 2010 Nano Lett. 10 804
[74] Brihuega I et al. 2012 Phys. Rev. Lett. 109 196802
[75] Du J et al. 2021 Chin. Phys. Lett. 38 056301
[76] van Wijk M M et al. 2015 2D Mater. 2 034010
[77] Carr S et al. 2018 Phys. Rev. B 98 224102
[78] Zhou S et al. 2015 Phys. Rev. B 92 155438
[79] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[80] Gadelha A C et al. 2021 Nature 590 405
[81] Liu Y W et al. 2020 Phys. Rev. Lett. 125 236102
[82] Andersen T I et al. 2021 Nat. Mater. 20 480
[83] Wong D et al. 2015 Phys. Rev. B 92 155409
[84] Bardeen J 1961 Phys. Rev. Lett. 6 57
[85] McGilly L J et al. 2020 Nat. Nanotechnol. 15 580
[86] Schmidt H et al. 2014 Nat. Commun. 5 5742
[87] Sunku S S et al. 2018 Science 362 1153
[88] Hesp N C H et al. 2021 Nat. Commun. 12 1640
[89] Yu Z et al. 2020 Small 16 1902844
[90] Perebeinos V et al. 2012 Phys. Rev. Lett. 109 236604
[91] Kim Y et al. 2013 Phys. Rev. Lett. 110 096602
[92] Li H et al. 2018 Ultramicroscopy 193 90
[93] Ahn S J et al. 2018 Science 361 782
[94] Moon P et al. 2019 Phys. Rev. B 99 165430
[95] Yu G et al. 2020 Phys. Rev. B 102 045113
[96] Yin J et al. 2016 Nat. Commun. 7 10699
[97] Koren E et al. 2016 Nat. Nanotechnol. 11 752
[98] Utama M I B et al. 2021 Nat. Phys. 17 184
[99] Shen Y H et al. 2021 Chin. Phys. Lett. 38 037501
[100] Yu G et al. 2020 Phys. Rev. B 102 115123
[101] Pal H K et al. 2019 Phys. Rev. Lett. 123 186402
[102] Eliel G S N et al. 2018 Nat. Commun. 9 1221
[103] Alencar T V et al. 2018 J. Phys.: Condens. Matter 30 175302
[104] Patel H et al. 2019 Nat. Commun. 10 1445
[105] Ni Z et al. 2009 Phys. Rev. B 80 125404
[106] Kim K et al. 2012 Phys. Rev. Lett. 108 246103
[107] Le H A and Do V N 2018 Phys. Rev. B 97 125136
[108] Havener R W et al. 2014 Nano Lett. 14 3353
[109] Wen L et al. 2021 Chin. Phys. B 30 017303
[110] Yu K et al. 2019 Phys. Rev. B 99 241405
[111] Ohta T et al. 2012 Phys. Rev. Lett. 109 186807
[112] Yan W et al. 2012 Phys. Rev. Lett. 109 126801
[113] Sunku S S et al. 2020 Nano Lett. 20 2958
[114] An X et al. 2013 Nano Lett. 13 909
[115] Yan W et al. 2013 Nat. Commun. 4 2159
[116] Kerelsky A et al. 2019 Nature 572 95
[117] de Laissardière G T et al. 2012 Phys. Rev. B 86 125413
[118] Ren Y N et al. 2020 Chin. Phys. B 29 117303
[119] Suárez M E et al. 2010 Phys. Rev. B 82 121407
[120] Moon P and Koshino M 2013 Phys. Rev. B 87 205404
[121] Tarnopolsky G et al. 2019 Phys. Rev. Lett. 122 106405
[122] Zhang X
Related articles from Frontiers Journals
[1] Chaofei Liu and Jian Wang. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials[J]. Chin. Phys. Lett., 2022, 39(7): 037301
[2] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, and Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(7): 037301
[3] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 037301
[4] Yu-Hao Shen, Wen-Yi Tong, He Hu, Jun-Ding Zheng, and Chun-Gang Duan. Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer[J]. Chin. Phys. Lett., 2021, 38(3): 037301
[5] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 037301
[6] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037301
[7] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 037301
[8] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 037301
[9] Solaimani M.. Miniband Formation in GaN/AlN Constant-Total-Effective-Radius Multi-shell Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(11): 037301
[10] HAO Hong-Yue, XIANG Wei, WANG Guo-Wei, XU Ying-Qiang, REN Zheng-Wei, HAN Xi, HE Zhen-Hong, LIAO Yong-Ping, WEI Si-Hang, NIU Zhi-Chuan. Wet Chemical Etching of Antimonide-Based Infrared Materials[J]. Chin. Phys. Lett., 2015, 32(10): 037301
[11] LU Jian-Ya, ZHENG Xin-He, WANG Nai-Ming, CHEN Xi, LI Bao-Ji, LU Shu-Long, YANG Hui. GaNAs/InGaAs Superlattice Solar Cells with High N Content in the Barrier Grown by All Solid-State Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 037301
[12] ZHANG Hui-Yun, ZHANG Yu-Ping, GAO Ying, YIN Yi-Heng. Independently Tunable Multichannel Filters Based on Graphene Superlattices with Fractal Potential Patterns[J]. Chin. Phys. Lett., 2012, 29(12): 037301
[13] WANG Guo-Wei, XU Ying-Qiang, GUO Jie, TANG Bao, REN Zheng-Wei, HE Zhen-Hong, NIU Zhi-Chuan. Growth and Characterization of GaSb-Based Type-II InAs/GaSb Superlattice Photodiodes for Mid-Infrared Detection[J]. Chin. Phys. Lett., 2010, 27(7): 037301
[14] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 037301
[15] LU Shuo, SHANG Jia-Xiang, ZHANG Yue. Influence of Interface Structure of Co/Cu (100) Superlattices on Electronic Structure and Giant Magnetoresistance[J]. Chin. Phys. Lett., 2007, 24(11): 037301
Viewed
Full text


Abstract