Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 036801    DOI: 10.1088/0256-307X/39/3/036801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination
Linfeng Wan1,2, Caoyuan Mu1,2, Yaofeng Liu1,2, Shaoheng Cheng1,2, Qiliang Wang1,2*, Liuan Li1,2*, Hongdong Li1,2*, and Guangtian Zou1,2
1State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
2Shenzhen Research Institute, Jilin University, Shenzhen 518057, China
Cite this article:   
Linfeng Wan, Caoyuan Mu, Yaofeng Liu et al  2022 Chin. Phys. Lett. 39 036801
Download: PDF(757KB)   PDF(mobile)(859KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-quality polycrystalline diamond films with dominated (100)-oriented grains are realized by combining the thermally oxidation and the homogeneous second growth processes. Moreover, we investigate the wettability property of the polycrystalline diamonds in various stages. Different surface structures (with various grain sizes, voids, and orientations, etc.) and terminations (hydrogen or oxygen) have significant effects on the wettability of polycrystalline diamond films. The wettability is further closely related to the polarity of solutions. By measuring the contact angle and calculating the dispersion and polarity components, we estimate the surface energy of polycrystalline diamond films, and explore the factors affecting the surface energy. The modulations in growth quality and wettability property of polycrystalline diamond films provide valuable data for development of diamond-based multiple devices in practical applications.
Received: 02 November 2021      Published: 01 March 2022
PACS:  68.08.Bc (Wetting)  
  68.35.Md (Surface thermodynamics, surface energies)  
  68.55.-a (Thin film structure and morphology)  
  81.05.ug (Diamond)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/036801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/036801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Linfeng Wan
Caoyuan Mu
Yaofeng Liu
Shaoheng Cheng
Qiliang Wang
Liuan Li
Hongdong Li
and Guangtian Zou
[1]Sussmann R S 2009 CVD Diamond for Electronic Devices and Sensors (New York: Wiley)
[2] Umezawa H 2018 Mater. Sci. Semicond. Process. 78 147
[3] Dipalo M, Gao Z, Scharpf J et al. 2009 Diamond Relat. Mater. 18 884
[4] Yang Y Z, Li H D, Cheng S H, Zou G T, Wang C X, and Lin Q 2014 Chem. Commun. 50 2900
[5] Ma Z C, Gao N, Cheng S H, Liu J S, Yang M C, Wang P, Feng Z Y, Wang Q L, and Li H D 2020 Chin. Phys. Lett. 37 046801
[6] Ostrovskaya L, Perevertailo V, Ralchenko V, Dementjev A, and Loginova O 2002 Diamond Relat. Mater. 11 845
[7] Gribanova E V, Zhukov A N, Antonyuk I E, Benndorf C, and Baskova E N 2000 Diamond Relat. Mater. 9 1
[8] Klauser F, Ghodbane S, Boukherroub R, Szunerits S, Steinmüller-Nethl D, Bertel E, and Memmel N 2010 Diamond Relat. Mater. 19 474
[9] Zhang X F, Cui Y X, Liu X B, Sui T Y, Ji C H, and Zhang D W 2019 Surf. Coat. Technol. 375 681
[10] Stehl C, Fischer M, Gsell S, Berdermann E, Rahman M S, Traeger M, Klein O, and Schreck M 2013 Appl. Phys. Lett. 103 151905
[11] Pei X Q, Cheng S H, Ma Y B, Wu D F, Liu J S, Wang Q L, Yang Y Z, and Li H D 2015 Appl. Surf. Sci. 346 189
[12] Asmussen J, Mossbrucker J, Khatami S, Huang W S, Wright B, and Ayres V 1999 Diamond Relat. Mater. 8 220
[13] Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lü J N, Lü X Y, and Jin Z S 2008 Chin. Phys. Lett. 25 1803
[14] Owens D and Wendt R C 1969 J. Appl. Polym. Sci. 13 1741
[15] Tokuda N, Ogura M, Matsumoto T, Yamasaki S, and Inokuma T 2016 Phys. Status Solidi A 213 2501
[16] Luo K, Liu B, Sun L, Zhao Z, and Tian Y J 2021 Chin. Phys. Lett. 38 028102
[17] Lv R Y, Yang X G, Yang D W et al. 2021 Chin. Phys. Lett. 38 076101
[18] Obraztsov A N, Kopylov P G, Chuvilin A L, and Savenko N V 2009 Diamond Relat. Mater. 18 1289
[19] Zolotukhin A A, Dolganov M A, Alekseev A M, and Obraztsov A N 2014 Diamond Relat. Mater. 42 15
[20]Pecharesky V K and Zavalij P Y 2005 Fundamentals of Powder Diffraction and Structural Characterization of Materials (New York: Springer)
[21]Fowkes F 1968 Chemistry and Physics of Interfaces (Washington, DC: American Chemical Society Publications)
[22] Young T 1805 Philos. Trans. R. Soc. 95 65
[23]Adamson W and Gast A P 1997 Physical Chemistry of Surfaces (New York: Wiley Publishing)
[24] Pinzari F, Ascarelli P, Cappelli E, Mattei G, and Giorgi R 2001 Diamond Relat. Mater. 10 781
[25] Cui J B, Graupner R, Ristein J, and Ley L 1999 Diamond Relat. Mater. 8 748
[26] Weide J V D, Zhang Z, Baumann P K, Wensell M G, Bernholc J, and Nemanich R J 1994 Phys. Rev. B 50 5803
Related articles from Frontiers Journals
[1] Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng, Jun-Song Liu, Ming-Chao Yang, Peng Wang, Zhi-Yuan Feng, Qi-Liang Wang, Hong-Dong Li. Wettability and Surface Energy of Hydrogen- and Oxygen-Terminated Diamond Films[J]. Chin. Phys. Lett., 2020, 37(4): 036801
[2] LI Xiang-Ming. Heterogeneous Nucleation on a Conical Cavity[J]. Chin. Phys. Lett., 2014, 31(03): 036801
[3] WANG Yong-Xin, CHEN Yang, TAN Shuai-Xia, LI Yan-Fang, ZHAO Ning, XU Jian, ZHANG Li-Na. The Propulsion of a Miniature Device by Organic Fluid Jetflow through Polymer Submicron Tubes[J]. Chin. Phys. Lett., 2013, 30(12): 036801
[4] ZHANG Fu-Chun, SHA Mao-Lin, REN Xiu-Ping, WU Guo-Zhong, HU Jun, ZHANG Yi. Morphology and Wettability of [Bmim][PF6] Ionic Liquid on HOPG Substrate[J]. Chin. Phys. Lett., 2010, 27(8): 036801
[5] YUE Rui-Feng, WU Jian-Gang, ZENG Xue-Feng, KANG Ming, LIU Li-Tian. Demonstration of Four Fundamental Operations of Liquid Droplets for Digital Microfluidic Systems Based on an Electrowetting-on-Dielectric Actuator[J]. Chin. Phys. Lett., 2006, 23(8): 036801
[6] ZENG Xue-Feng, YUE Rui-Feng, WU Jian-Gang, DONG Liang, LIU Li-Tian. Actuation and Control of Droplets by Using Electrowetting-on-Dielectric[J]. Chin. Phys. Lett., 2004, 21(9): 036801
Viewed
Full text


Abstract