CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Free-Volume Model for Thermal Expansion of Metallic Glass |
Tong Lu1,2, Song Ling Liu1,2, Yong Hao Sun1,2,3*, Wei-Hua Wang1,2,3, and Ming-Xiang Pan1,2,3* |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Tong Lu, Song Ling Liu, Yong Hao Sun et al 2022 Chin. Phys. Lett. 39 036401 |
|
|
Abstract Many mechanical, thermal and transport behaviors of polymers and metallic glasses are interpreted by the free-volume model, whereas their applications on thermal expansion behaviors of glasses is rarely seen. Metallic glass has a range of glassy states depending on cooling rate, making their coefficients of thermal expansion vary with the glassy states. Anharmonicity in the interatomic potential is often used to explain different coefficients of thermal expansion in crystalline metals or in different metallic-glass compositions. However, it is unclear how to quantify the change of anharmonicity in the various states of metallic glass of the same composition and to connect it with coefficient of thermal expansion. In the present work, isothermal annealing is applied, and the dimensional changes are measured for La$_{62}$Al$_{14}$Cu$_{11.7}$Ag$_{2.3}$Ni$_{5}$Co$_{5}$ and Zr$_{52.5}$Cu$_{17.9}$Ni$_{14.6}$Al$_{10}$Ti$_{5}$ metallic glasses, from which changes in density and the coefficients of thermal expansion of the specimens are both recorded. The coefficients of thermal expansion linearly decrease with densification reflecting the role of free volume in thermal expansion. Free volume is found to have not only volume but also entity with an effective coefficient of thermal expansion similar to that of gases. Therefore, the local regions containing free volume inside the metallic glass are gas-like instead of liquid-like in terms of thermal expansion behaviors.
|
|
Received: 07 January 2022
Published: 01 March 2022
|
|
PACS: |
code.64.70.pe
|
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
81.70.Pg
|
(Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)
|
|
|
|
|
[1] | Murali P and Ramamurty U 2005 Acta Mater. 53 1467 |
[2] | Spaepen F 1977 Acta Mater. 25 407 |
[3] | Spaepen F 2006 Scr. Mater. 54 363 |
[4] | Turnbull D and Cohen M H 1961 J. Chem. Phys. 34 120 |
[5] | Turnbull D and Cohen M H 1970 J. Chem. Phys. 52 3038 |
[6] | Slipenyuk A and Eckert J 2004 Scr. Mater. 50 39 |
[7] | Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, and Greer A L 2015 Nature 524 200 |
[8] | Wang D P, Zhu Z G, Xue R J, Ding D W, Bai H Y, and Wang W H 2013 J. Appl. Phys. 114 173505 |
[9] | Mattern N, Stoica M, Vaughan G, and Eckert J 2012 Acta Mater. 60 517 |
[10] | Kato H, Chen H S, and Inoue A 2008 Scr. Mater. 58 1106 |
[11] | Sun Y, Concustell A, and Greer A L 2016 Nat. Rev. Mater. 1 16039 |
[12] | Bordat P, Affouard F, Descamps M, and Ngai K L 2004 Phys. Rev. Lett. 93 105502 |
[13] | Qu D, Liss K D, Yan K, Reid M, Almer J D, Wang Y, Liao X, and Shen J 2011 Adv. Eng. Mater. 13 861 |
[14] | Gangopadhyay A K, Pueblo C E, and Kelton K F 2020 Phys. Rev. Mater. 4 095602 |
[15] | Louzguine D V, Yavari A R, Ota K, Vaughan G, and Inoue A 2005 J. Non-Cryst. Solids 351 1639 |
[16] | Yavari A R, Le M A, Inoue A, Nishiyama N, Lupu N, Matsubara E, Botta W J, Vaughan G, Di Michiel M, and Kvick A 2005 Acta Mater. 53 1611 |
[17] | Meng Q G, Zhang S G, Li J G, and Bian X F 2006 Scr. Mater. 55 517 |
[18] | Ota K, Botta W J, Vaughan G, and Yavari A R 2005 J. Alloys Compd. 388 L1 |
[19] | Ehrenfest P 1915 Proceedings of the Knoinklijke Akademie van Wetenschappen te Amsterdam 17 1184 |
[20] | Zhang Y, Mattern N, and Eckert J 2013 Appl. Phys. Lett. 102 081901 |
[21] | Evertz S, Music D, Schnabel V, Bednarcik J, and Schneider J M 2017 Sci. Rep. 7 15744 |
[22] | Bednarcik J, Michalik S, Sikorski M, Curfs C, Wang X D, Jiang J Z, and Franz H 2011 J. Phys.: Condens. Matter 23 254204 |
[23] | Su Y, Wang X, Cao Q, Zhang D, and Jiang J Z 2020 J. Phys. Chem. C 124 19817 |
[24] | Tang M, Pan X, Zhang M, and Wen H 2021 Chin. Phys. Lett. 38 026501 |
[25] | Simmons R O and Balluffi R W 1960 Phys. Rev. 117 52 |
[26] | Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T, and Yang Y 2016 Acta Mater. 121 266 |
[27] | Aqra F and Ayyad A 2011 Appl. Surf. Sci. 257 6372 |
[28] | Yaws C L 2001 Matheson Gas Data Book 7$^{th}$ edn (New York: McGraw-Hill) |
[29] | Yaws C L 1999 Chemical Properties Handbook (New York: McGraw-Hill) |
[30] | Zhang S, Wang W, and Guan P 2021 Chin. Phys. Lett. 38 016802 |
[31] | Dong J, Feng Y H, Huang Y, Yi J, Wang W H, Bai H Y, and Sun B A 2020 Chin. Phys. Lett. 37 017103 |
[32] | Li D M, Chen L S, Yu P, Ding D, and Xia L 2020 Chin. Phys. Lett. 37 086401 |
[33] | Cao Q L, Huang D H, Yang J S, and Wang F H 2020 Chin. Phys. Lett. 37 076201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|