Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 036301    DOI: 10.1088/0256-307X/39/3/036301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure
Kun Luo1†, Baozhong Li1†, Lei Sun1, Yingju Wu1,2*, Yanfeng Ge1,2, Bing Liu1, Julong He1, Bo Xu1, Zhisheng Zhao1*, and Yongjun Tian1
1Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
Cite this article:   
Kun Luo, Baozhong Li, Lei Sun et al  2022 Chin. Phys. Lett. 39 036301
Download: PDF(1691KB)   PDF(mobile)(1843KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Both boron nitride (BN) and carbon (C) have $sp$, $sp^{2}$ and $sp^{3}$ hybridization modes, thus resulting in a variety of BN and C polymorphs with similar structures, such as hexagonal BN (hBN) and graphite, cubic BN (cBN) and diamond. Here, five types of BN polymorph structures are proposed theoretically, inspired by the graphite-diamond hybrid structures discovered in a recent experiment. These BN polymorphs with graphite-diamond hybrid structures possess excellent mechanical properties with combined high hardness and high ductility, and also exhibit various electronic properties such as semi-conductivity, semi-metallicity, and even one- and two-dimensional conductivity, differing from known insulators hBN and cBN. The simulated diffraction patterns of these BN hybrid structures could account for the unsolved diffraction patterns of intermediate products composed of so-called “compressed hBN” and diamond-like BN, caused by phase transitions in previous experiments. Thus, this work provides a theoretical basis for the presence of these types of hybrid materials during phase transitions between graphite-like and diamond-like BN polymorphs.
Received: 25 December 2021      Editors' Suggestion Published: 01 March 2022
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  63.20.dk (First-principles theory)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  91.60.Hg (Phase changes)  
  81.05.U- (Carbon/carbon-based materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/036301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/036301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun Luo
Baozhong Li
Lei Sun
Yingju Wu
Yanfeng Ge
Bing Liu
Julong He
Bo Xu
Zhisheng Zhao
and Yongjun Tian
[1] Pauling L 1966 Proc. Natl. Acad. Sci. USA 56 1646
[2] Pease R S 1952 Acta Crystallogr. 5 356
[3] Luo K, Yuan X, Zhao Z et al. 2017 J. Appl. Phys. 121 165102
[4] Zhao X, Huang J, Zhuo Z et al. 2020 Chin. Phys. Lett. 37 044204
[5] Sato T 1985 Proc. Jpn. Acad. Ser. B 61 459
[6] Chubarov M, Pedersen H, Högberg H, Jensen J, and Henry A 2012 Cryst. Growth & Des. 12 3215
[7] Chen C, Yin D, Kato T et al. 2019 Proc. Natl. Acad. Sci. USA 116 11181
[8] Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144
[9] Wentorf R H 1957 J. Chem. Phys. 26 956
[10] Golberg D, Bando Y, Huang Y et al. 2010 ACS Nano 4 2979
[11] Zhang S, Li Z, Luo K et al. 2022 Natl. Sci. Rev. 9 nwab140
[12] Zhang S, Wu Y, Luo K et al. 2021 Cell Rep. Phys. Sci. 2 100575
[13] Lv R, Yang X, Yang D et al. 2021 Chin. Phys. Lett. 38 076101
[14] He L L, Akaishi M, and Horiuchi S 1998 Microsc. Res. Tech. 40 243
[15] Watanabe K, Taniguchi T, and Kanda H 2004 Nat. Mater. 3 404
[16] Taniguchi T, Watanabe K, Koizumi S et al. 2002 Appl. Phys. Lett. 81 4145
[17] Wentorf R H 1961 J. Chem. Phys. 34 809
[18] Renata M, Wentzcovitch S, F et al. 1988 Phys. Rev. B 38 6191
[19] Corrigan F R and Bundy F P 1975 J. Chem. Phys. 63 3812
[20] Onodera A, Inoue K, Yoshihara H et al. 1990 J. Mater. Sci. 25 4279
[21] Wakatsuki M, Ichinose K, and Aoki T 1972 Mater. Res. Bull. 7 999
[22] Sato T, Ishii T, and Setaka N 1982 J. Am. Ceram. Soc. 65 162
[23] Kurdyumov A, Britun V, and Petrusha I 1996 Diamond Relat. Mater. 5 1229
[24] Zhang T C, Yu S, Li D M et al. 1998 Chin. Phys. Lett. 15 70
[25] He L L, Taniguchi T, Sato T et al. 1997 J. Appl. Phys. 82 4241
[26] Sumiya H, Uesaka S, and Satoh S 2000 J. Mater. Sci. 35 1181
[27] Sumiya H and Harano K 2012 Diamond Relat. Mater. 24 44
[28] Horiuchi S, He L L, Onoda M et al. 1996 Appl. Phys. Lett. 68 182
[29] Bundy F P 1967 J. Chem. Phys. 46 3437
[30] Irifune T, Kurio A, Sakamoto S et al. 2004 Phys. Earth Planet. Inter. 143–144 593
[31] Németh P, McColl K, Smith R L et al. 2020 Nano Lett. 20 3611
[32] Németh P, Mccoll K, Garvie L et al. 2020 Nat. Mater. 19 1126
[33] Zhao Z, Luo K, Liu B et al. 2021 A Preprint on Research Square
[34] Ge Y, Luo K, Liu Y et al. 2022 Mater. Today Phys. 23 100630
[35] Luo K, Liu B, Sun L et al. 2021 Chin. Phys. Lett. 38 028102
[36]Zhao Z, Luo K, Liu B et al. 2019 Patent Application: CN 110330006A (2019-08-05), US 20210039950A1 (2020-03-26), EP 3772486A1 (2020-03-26), JP 2021024774A (2020-04-14)
Zhao Z, Luo K, and Tian Y 2019 The 9th International Forum on Advanced Materials (Wuhan, China 24–26 September 2019) pp 78–85
[37]2012 Materials Studio Program version 7.0 (Accelrys Inc.: San Diego, CA)
[38] Clark S J, Segall M D, Pickard C J et al. 2005 Z. Kristallogr. - Cryst. Mater. 220 567
[39] Vanderbilt D 1990 Phys. Rev. B 41 7892
[40] Laasonen K, Car R, Lee C et al. 1991 Phys. Rev. B 43 6796
[41] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[42] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[44] Gu Q, Xing D, and Sun J 2019 Chin. Phys. Lett. 36 097401
[45] Ma Y M 2019 Chin. Phys. Lett. 36 090101
[46] Hinuma Y, Pizzi G, Kumagai Y et al. 2017 Comput. Mater. Sci. 128 140
[47] Refson K, Tulip P R, and Clark S J 2006 Phys. Rev. B 73 155114
[48] Datchi F, Dewaele A, Le G Y et al. 2007 Phys. Rev. B 75 214104
[49]Zhao Z, Luo K, Sun L et al. 2020 Patent Application: CN 113526475A (2020-04-17), US 20210323822A1 (2020-09-30), EP 3896032A1 (2020-11-09), JP 2021172579A (2020-10-28)
[50] Hill R 1952 Proc. Phys. Soc. A 65 349
[51] Born M and Huang K 1955 Am. J. Phys. 23 474
[52] Born M 1940 Proc. Cambridge Philos. Soc. 36 160
[53] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[54] Chen X Q, Niu H, Li D et al. 2011 Intermetallics 19 1275
[55] Tian Y, Xu B, and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[56] Perdew J P 2009 Int. J. Quantum Chem. 28 497
Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 036301
[2] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 036301
[3] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 036301
[4] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 036301
[5] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 036301
[6] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates *[J]. Chin. Phys. Lett., 0, (): 036301
[7] An-Zhi Xie, Tian-Zhen Wen, Ji-Ling Li. Fe-Doped All-Boron Fullerene B$_{40}$ with Tunable Electronic and Magnetic Properties as Single Molecular Devices[J]. Chin. Phys. Lett., 2019, 36(11): 036301
[8] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 036301
[9] Jian-Peng Sun, Dong Zhang, Kai Chang. Molybdenum Carbide: A Stable Topological Semimetal with Line Nodes and Triply Degenerate Points[J]. Chin. Phys. Lett., 2017, 34(2): 036301
[10] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 036301
[11] Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang, Zhong-Xiang Zhou. Simulation of High-Transmission Chiral Metamaterial with Impedance Matching to a Vacuum[J]. Chin. Phys. Lett., 2016, 33(01): 036301
[12] XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng, CHEN Rong-Na, GAO Fa-Ming. First Principles Study on Mechanical Properties of Superhard α-Ga Boron[J]. Chin. Phys. Lett., 2015, 32(02): 036301
[13] LUO Xiao-Guang, HE Ju-Long. B–C–N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds[J]. Chin. Phys. Lett., 2012, 29(3): 036301
[14] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 036301
[15] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 036301
Viewed
Full text


Abstract