CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure |
Kun Luo1†, Baozhong Li1†, Lei Sun1, Yingju Wu1,2*, Yanfeng Ge1,2, Bing Liu1, Julong He1, Bo Xu1, Zhisheng Zhao1*, and Yongjun Tian1 |
1Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 2Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
|
|
Cite this article: |
Kun Luo, Baozhong Li, Lei Sun et al 2022 Chin. Phys. Lett. 39 036301 |
|
|
Abstract Both boron nitride (BN) and carbon (C) have $sp$, $sp^{2}$ and $sp^{3}$ hybridization modes, thus resulting in a variety of BN and C polymorphs with similar structures, such as hexagonal BN (hBN) and graphite, cubic BN (cBN) and diamond. Here, five types of BN polymorph structures are proposed theoretically, inspired by the graphite-diamond hybrid structures discovered in a recent experiment. These BN polymorphs with graphite-diamond hybrid structures possess excellent mechanical properties with combined high hardness and high ductility, and also exhibit various electronic properties such as semi-conductivity, semi-metallicity, and even one- and two-dimensional conductivity, differing from known insulators hBN and cBN. The simulated diffraction patterns of these BN hybrid structures could account for the unsolved diffraction patterns of intermediate products composed of so-called “compressed hBN” and diamond-like BN, caused by phase transitions in previous experiments. Thus, this work provides a theoretical basis for the presence of these types of hybrid materials during phase transitions between graphite-like and diamond-like BN polymorphs.
|
|
Received: 25 December 2021
Editors' Suggestion
Published: 01 March 2022
|
|
PACS: |
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
63.20.dk
|
(First-principles theory)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
91.60.Hg
|
(Phase changes)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
|
|
|
[1] | Pauling L 1966 Proc. Natl. Acad. Sci. USA 56 1646 |
[2] | Pease R S 1952 Acta Crystallogr. 5 356 |
[3] | Luo K, Yuan X, Zhao Z et al. 2017 J. Appl. Phys. 121 165102 |
[4] | Zhao X, Huang J, Zhuo Z et al. 2020 Chin. Phys. Lett. 37 044204 |
[5] | Sato T 1985 Proc. Jpn. Acad. Ser. B 61 459 |
[6] | Chubarov M, Pedersen H, Högberg H, Jensen J, and Henry A 2012 Cryst. Growth & Des. 12 3215 |
[7] | Chen C, Yin D, Kato T et al. 2019 Proc. Natl. Acad. Sci. USA 116 11181 |
[8] | Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144 |
[9] | Wentorf R H 1957 J. Chem. Phys. 26 956 |
[10] | Golberg D, Bando Y, Huang Y et al. 2010 ACS Nano 4 2979 |
[11] | Zhang S, Li Z, Luo K et al. 2022 Natl. Sci. Rev. 9 nwab140 |
[12] | Zhang S, Wu Y, Luo K et al. 2021 Cell Rep. Phys. Sci. 2 100575 |
[13] | Lv R, Yang X, Yang D et al. 2021 Chin. Phys. Lett. 38 076101 |
[14] | He L L, Akaishi M, and Horiuchi S 1998 Microsc. Res. Tech. 40 243 |
[15] | Watanabe K, Taniguchi T, and Kanda H 2004 Nat. Mater. 3 404 |
[16] | Taniguchi T, Watanabe K, Koizumi S et al. 2002 Appl. Phys. Lett. 81 4145 |
[17] | Wentorf R H 1961 J. Chem. Phys. 34 809 |
[18] | Renata M, Wentzcovitch S, F et al. 1988 Phys. Rev. B 38 6191 |
[19] | Corrigan F R and Bundy F P 1975 J. Chem. Phys. 63 3812 |
[20] | Onodera A, Inoue K, Yoshihara H et al. 1990 J. Mater. Sci. 25 4279 |
[21] | Wakatsuki M, Ichinose K, and Aoki T 1972 Mater. Res. Bull. 7 999 |
[22] | Sato T, Ishii T, and Setaka N 1982 J. Am. Ceram. Soc. 65 162 |
[23] | Kurdyumov A, Britun V, and Petrusha I 1996 Diamond Relat. Mater. 5 1229 |
[24] | Zhang T C, Yu S, Li D M et al. 1998 Chin. Phys. Lett. 15 70 |
[25] | He L L, Taniguchi T, Sato T et al. 1997 J. Appl. Phys. 82 4241 |
[26] | Sumiya H, Uesaka S, and Satoh S 2000 J. Mater. Sci. 35 1181 |
[27] | Sumiya H and Harano K 2012 Diamond Relat. Mater. 24 44 |
[28] | Horiuchi S, He L L, Onoda M et al. 1996 Appl. Phys. Lett. 68 182 |
[29] | Bundy F P 1967 J. Chem. Phys. 46 3437 |
[30] | Irifune T, Kurio A, Sakamoto S et al. 2004 Phys. Earth Planet. Inter. 143–144 593 |
[31] | Németh P, McColl K, Smith R L et al. 2020 Nano Lett. 20 3611 |
[32] | Németh P, Mccoll K, Garvie L et al. 2020 Nat. Mater. 19 1126 |
[33] | Zhao Z, Luo K, Liu B et al. 2021 A Preprint on Research Square |
[34] | Ge Y, Luo K, Liu Y et al. 2022 Mater. Today Phys. 23 100630 |
[35] | Luo K, Liu B, Sun L et al. 2021 Chin. Phys. Lett. 38 028102 |
[36] | Zhao Z, Luo K, Liu B et al. 2019 Patent Application: CN 110330006A (2019-08-05), US 20210039950A1 (2020-03-26), EP 3772486A1 (2020-03-26), JP 2021024774A (2020-04-14) |
| Zhao Z, Luo K, and Tian Y 2019 The 9th International Forum on Advanced Materials (Wuhan, China 24–26 September 2019) pp 78–85 |
[37] | 2012 Materials Studio Program version 7.0 (Accelrys Inc.: San Diego, CA) |
[38] | Clark S J, Segall M D, Pickard C J et al. 2005 Z. Kristallogr. - Cryst. Mater. 220 567 |
[39] | Vanderbilt D 1990 Phys. Rev. B 41 7892 |
[40] | Laasonen K, Car R, Lee C et al. 1991 Phys. Rev. B 43 6796 |
[41] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 |
[42] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 |
[43] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[44] | Gu Q, Xing D, and Sun J 2019 Chin. Phys. Lett. 36 097401 |
[45] | Ma Y M 2019 Chin. Phys. Lett. 36 090101 |
[46] | Hinuma Y, Pizzi G, Kumagai Y et al. 2017 Comput. Mater. Sci. 128 140 |
[47] | Refson K, Tulip P R, and Clark S J 2006 Phys. Rev. B 73 155114 |
[48] | Datchi F, Dewaele A, Le G Y et al. 2007 Phys. Rev. B 75 214104 |
[49] | Zhao Z, Luo K, Sun L et al. 2020 Patent Application: CN 113526475A (2020-04-17), US 20210323822A1 (2020-09-30), EP 3896032A1 (2020-11-09), JP 2021172579A (2020-10-28) |
[50] | Hill R 1952 Proc. Phys. Soc. A 65 349 |
[51] | Born M and Huang K 1955 Am. J. Phys. 23 474 |
[52] | Born M 1940 Proc. Cambridge Philos. Soc. 36 160 |
[53] | Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 |
[54] | Chen X Q, Niu H, Li D et al. 2011 Intermetallics 19 1275 |
[55] | Tian Y, Xu B, and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93 |
[56] | Perdew J P 2009 Int. J. Quantum Chem. 28 497 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|