CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes |
Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun* |
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
Cite this article: |
Chi Ding, Junjie Wang, Yu Han et al 2022 Chin. Phys. Lett. 39 036101 |
|
|
Abstract Polymeric nitrogen as a new class of high energy density materials has promising applications. We develop a new scheme of crystal structure searching in a confined space using external confining potentials fitted from first-principles calculations. As a showcase, this method is employed to systematically explore novel polymeric nitrogen structures confined in single-walled carbon nanotubes. Several quasi-one-dimensional (1D) single-bonded polymeric nitrogen structures are realized, two of them are composed of nanotubes instead of chains. These new polymeric nitrogen phases are mechanically stable at ambient pressure and temperature according to phonon calculations and ab initio molecular dynamics simulations. It is revealed that the stabilization of zigzag and armchair chains confined in carbon nanotubes (CNTs) are mostly attributed to the charge transfer from carbon to nitrogen. However, for the novel nitrogen nanotube systems, electrons overlapping in the middle space provide strong Coulomb repulsive forces, which not only induce charge transfer from the middle to the sides but also stabilize the polymeric nitrogen. Our work provides a new strategy for designing novel high-energy-density polymeric nitrogen materials, as well as other new materials with the help of confined space inside porous systems, such as nanotubes, covalent organic frameworks, and zeolites.
|
|
Received: 22 December 2021
Express Letter
Published: 03 February 2022
|
|
PACS: |
61.46.Fg
|
(Nanotubes)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
|
|
[1] | Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419 |
[2] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558 |
[3] | Ma Y, Oganov A R, Li Z, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501 |
[4] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702 |
[5] | Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, and Ma Y 2012 Phys. Rev. Lett. 109 175502 |
[6] | Sun J, Martinez-Canales M, Klug D D, Pickard C J, and Needs R J 2013 Phys. Rev. Lett. 111 175502 |
[7] | Tomasino D, Kim M, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502 |
[8] | Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, and Mao H K 2020 Sci. Adv. 6 eaba9206 |
[9] | Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, and Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001 |
[10] | Eremets M I, Popov M Y, Trojan I A, Denisov V N, Boehler R, and Hemley R J 2004 J. Chem. Phys. 120 10618 |
[11] | Christe K O 2007 Propell.Explos. Pyrotech. 32 194 |
[12] | Laniel D, Geneste G, Weck G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001 |
[13] | Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, and Zhou C Y 2020 Chin. Phys. Lett. 37 068101 |
[14] | Peng F, Yao Y, Liu H, and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 |
[15] | Xu Y, Wang Q, Shen C, Lin Q, Wang P, and Lu M 2017 Nature 549 78 |
[16] | Zhang C, Sun C G, Hu B C, Yu C M, and Lu M 2017 Science 355 374 |
[17] | Huang B and Frapper G 2018 Chem. Mater. 30 7623 |
[18] | Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q, and Sun J 2019 J. Phys. Chem. Lett. 10 6166 |
[19] | Bykov M, Chariton S, Bykova E, Khandarkhaeva S, Fedotenko T, Ponomareva A V, Tidholm J, Tasnadi F, Abrikosov I A, Sedmak P, Prakapenka V, Hanfland M, Liermann H P, Mahmood M, Goncharov A F, Dubrovinskaia N, and Dubrovinsky L 2020 Angew. Chem. Int. Ed. Engl. 59 10321 |
[20] | Yuan J, Xia K, Wu J, and Sun J 2021 Sci. Chin. Phys. Mech. & Astron. 64 218211 |
[21] | Niu S, Li Z, Li H, Shi X, Yao Z, and Liu B 2021 Inorg. Chem. 60 6772 |
[22] | Salke N P, Xia K, Fu S, Zhang Y, Greenberg E, Prakapenka V B, Liu J, Sun J, and Lin J F 2021 Phys. Rev. Lett. 126 065702 |
[23] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 |
[24] | Laniel D, Winkler B, Koemets E, Fedotenko T, Bykov M, Bykova E, Dubrovinsky L, and Dubrovinskaia N 2019 Nat. Commun. 10 4515 |
[25] | Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith J S, Prakapenka V B, Mahmood M F, Goncharov A F, Ponomareva A V, Tasnádi F, Abrikosov A I, Bin M T, Hotz I, Rudenko A N, Katsnelson M I, Dubrovinskaia N, Dubrovinsky L, and Abrikosov I A 2021 Phys. Rev. Lett. 126 175501 |
[26] | Zhang J, Niu C, Zhang H, Zhao J, Wang X, and Zeng Z 2021 J. Phys. Chem. Lett. 12 5731 |
[27] | Medeiros P V C, Marks S, Wynn J M, Vasylenko A, Ramasse Q M, Quigley D, Sloan J, and Morris A J 2017 ACS Nano 11 6178 |
[28] | Slade C A, Sanchez A M, and Sloan J 2019 Nano Lett. 19 2979 |
[29] | Wang Z X, Ke X Z, Zhu Z Y, Zhang F S, Ruan M L, and Yang J Q 2000 Phys. Rev. B 61 R2472 |
[30] | Sandoval S, Tobias G, and Flahaut E 2019 Inorg. Chim. Acta 492 66 |
[31] | Gimondi I and Salvalaglio M 2018 Mol. Syst. Des. Eng. 3 243 |
[32] | Lei S, Paulus B, Li S, and Schmidt B 2016 J. Comput. Chem. 37 1313 |
[33] | Fujimori T, Morelos-Gomez A, Zhu Z, Muramatsu H, Futamura R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, Choi Y C, Tomanek D, and Kaneko K 2013 Nat. Commun. 4 2162 |
[34] | Thang P, Oh S, Stonemeyer S, Shevitski B, Cain J D, Song C, Ercius P, Cohen M L, and Zettl A 2020 Phys. Rev. Lett. 124 206403 |
[35] | Abou-Rachid H, Hu A, Timoshevskii V, Song Y, and Lussier L S 2008 Phys. Rev. Lett. 100 196401 |
[36] | Li Y, Bai H, Lin F, and Huang Y 2018 Physica E 103 444 |
[37] | Benchafia E M, Yao Z, Yuan G, Chou T, Piao H, Wang X, and Iqbal Z 2017 Nat. Commun. 8 930 |
[38] | Ji W, Timoshevskii V, Guo H, Abou-Rachid H, and Lussier L S 2009 Appl. Phys. Lett. 95 021904 |
[39] | Liu S J, Yao M G, Ma F X, Liu B, Yao Z, Liu R, Cui T, and Liu B B 2016 J. Phys. Chem. C 120 16412 |
[40] | Liu S, Li H Y, Yao Z, and Lu S C 2021 Mater. Today Commun. 26 101670 |
[41] | Xia K, Gao H, Liu C, Yuan J N, Sun J, Wang H T, and Xing D Y 2018 Sci. Bull. 63 817 |
[42] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 |
[43] | Zhang J, Oganov A R, Li X, and Niu H 2017 Phys. Rev. B 95 020103 |
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[45] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[46] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[47] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[48] | Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|