FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases |
Yuan Zhao1†, Yun-Bin Lei1†, Yu-Xi Xu2, Si-Liu Xu1*, Houria Triki3, Anjan Biswas4,5, and Qin Zhou6* |
1School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China 2School of International Education, Wuhan University of Technology, Wuhan 430071, China 3Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, 23000 Annaba, Algeria 4Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762-4900, USA 5Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia 6School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
|
|
Cite this article: |
Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu et al 2022 Chin. Phys. Lett. 39 034202 |
|
|
Abstract We propose a scheme to generate stable vector spatiotemporal solitons through a Rydberg electromagnetically induced transparency (Rydberg-EIT) system. Three-dimensional vector monopole and vortex solitons have been found under three nonlocal degrees. The numerical calculation and analytical solutions indicate that these solitons are generated with low energy and can stably propagate along the axes. The behavior of vector spatiotemporal solitons can be manipulated by the local and nonlocal nonlinearities. The results show a memory feature as these solitons can be stored and retrieved effectively by tuning the control field.
|
|
Received: 27 December 2021
Editors' Suggestion
Published: 01 March 2022
|
|
|
|
|
|
[1] | Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932 |
[2] | Wang L L and Liu W J 2020 Chin. Phys. B 29 070502 |
[3] | Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201 |
[4] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 |
[5] | Zhou Q, Wang T, Biswas A, and Liu W J 2022 Nonlinear Dyn. 107 1215 |
[6] | Cao Q and Dai C Q 2021 Chin. Phys. Lett. 38 090501 |
[7] | Yin K, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201 |
[8] | Zhao J, Luan Z, Zhang P, Dai C, Biswas A, Liu W, and N A 2020 Optik 220 165189 |
[9] | Silberberg Y 1990 Opt. Lett. 15 1282 |
[10] | Bai Z Y, Li W, and Huang G X 2019 Optica 6 309 |
[11] | Minardi S, Eilenberger F, Kartashov Y V, Szameit A, Röpke U, Kobelke J, Schuster K, Bartelt H, Nolte S, Torner L, Lederer F, Tünnermann A, and Pertsch T 2010 Phys. Rev. Lett. 105 263901 |
[12] | Malomed B, Mihalache D, Wise F, and Torner L 2005 J. Opt. B 7 R53 |
[13] | Mcleod R, Wagner K, and Blair S 1995 Phys. Rev. A 52 3254 |
[14] | Edmundson D E and Enns R H 1992 Opt. Lett. 17 586 |
[15] | Skryabin D V and Firth W J 1998 Opt. Commun. 148 79 |
[16] | Desyatnikov A, Maimistov A I, and Malomed B A 2000 Phys. Rev. E 61 3107 |
[17] | Ge J J, Shen M, Ma C L, Zang T C, and Dai L 2015 Phys. Rev. E 91 023203 |
[18] | Mihalache D, Mazilu D, Crasovan L C, Towers I, Buryak A V, Malomed B A, Torner L, Torres J P, and Lederer F 2002 Phys. Rev. Lett. 88 073902 |
[19] | Zhang Y C, Zhou Z W, Malomed B A, and Pu H 2015 Phys. Rev. Lett. 115 253902 |
[20] | Hang C and Huang G X 2018 Phys. Rev. A 98 043840 |
[21] | Friedler I, Petrosyan D, Fleischhauer M, and Kurizki G 2005 Phys. Rev. A 72 043803 |
[22] | Mohapatra A K, Jackson T R, and Adams C S 2007 Phys. Rev. Lett. 98 113003 |
[23] | Xu S L, Zhou Q, Zhao D, Belić M R, and Zhao Y 2020 Appl. Math. Lett. 106 106230 |
[24] | Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T, and Lukin M D 2011 Phys. Rev. Lett. 107 133602 |
[25] | He B, Sharypov A V, Sheng J, Simon C, and Xiao M 2014 Phys. Rev. Lett. 112 133606 |
[26] | Mukherjee K, Majumder S, Mondal P K, and Deb B 2018 J. Phys. B 51 015004 |
[27] | Wang J, Gacesa M, and Cote R 2015 Phys. Rev. Lett. 114 243003 |
[28] | Kumar T, Bhattacherjee A B, and Manmohan 2011 Int. J. Mod. Phys. B 25 1737 |
[29] | Hsueh C H, Tsai Y C, Wu K S, Chang M S, and Wu W C 2013 Phys. Rev. A 88 043646 |
[30] | Mauger S, Millen J, and Jones M P A 2007 J. Phys. B 40 F319 |
[31] | Mcquillen P, Zhang X, Strickler T, Dunning F B, and Killian T C 2013 Phys. Rev. A 87 013407 |
[32] | Fields G, Zhang X, Dunning F B, Yoshida S, and B 2018 Phys. Rev. A 97 013429 |
[33] | Kartashov Y V, Malomed B A, Vysloukh V A, and Torner L 2009 Phys. Rev. A 80 053816 |
[34] | Cerda S C, Cavalcanti S B, and Hickmann J M 1998 Eur. Phys. J. D 1 313 |
[35] | Li H, Xu S L, Belić M R, and Cheng J X 2018 Phys. Rev. A 98 033827 |
[36] | Kartashov Y V, Malomed B A, Leticia T, and Lluis T 2018 Phys. Rev. A 98 013612 |
[37] | Murray C and Pohl T 2016 Adv. At. Mol. Opt. Phys. 65 321 |
[38] | Kartashov Y V, Hang C, Huang G, and Torner L 2016 Optica 3 1048 |
[39] | Xu S L, Li H, Zhou Q, Zhou G P, Zhao D, Belić M R, He J R, and Zhao Y 2020 Opt. Express 28 16322 |
[40] | Novikova I, Phillips N B, and Gorshkov A V 2008 Phys. Rev. A 78 021802 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|