Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 034201    DOI: 10.1088/0256-307X/39/3/034201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands
Hui Li1,2†, Haigang Liu2†, Yangfeifei Yang2, Ruifeng Lu1*, and Xianfeng Chen2,3,4,5*
1Institute of Ultrafast Optical Physics, Department of Applied Physics & MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4Jinan Institute of Quantum Technology, Jinan 250101, China
5Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Cite this article:   
Hui Li, Haigang Liu, Yangfeifei Yang et al  2022 Chin. Phys. Lett. 39 034201
Download: PDF(724KB)   PDF(mobile)(821KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Perfect vector beams are a class of special vector beams with invariant radius and intensity profiles under changing topological charges. However, with the limitation of current devices, the generation of these vector beams is limited in the visible and infrared wavebands. Herein, we generate perfect vector beams in the ultraviolet region assisted by nonlinear frequency conversion. Experimental and simulation results show that the radius of the generated ultraviolet perfect vector beams remains invariant and is thus independent of the topological charge. Furthermore, we measure the power of the generated ultraviolet perfect vector beams with the change of their topological charges. This study provides an alternative approach to generating perfect vector beams for ultraviolet wavebands and may promote their application to optical trapping and optical communication.
Received: 25 November 2021      Editors' Suggestion Published: 01 March 2022
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.25.Ja (Polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/034201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/034201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Li
Haigang Liu
Yangfeifei Yang
Ruifeng Lu
and Xianfeng Chen
[1] Hnatovsky C, Shvedov V, Krolikowski W, and Rode A 2011 Phys. Rev. Lett. 106 123901
[2] Zhao Y, Zhan Q, Zhang Y, and Li Y P 2005 Opt. Lett. 30 848
[3] Chen Y and Cai Y 2014 Opt. Lett. 39 2549
[4] Weng X, Du L, Shi P, and Yuan X 2017 Opt. Express 25 9039
[5] Ndagano B, Nape I, Cox M A, Rosales-Guzman C, and Forbes A 2018 J. Lightwave Technol. 36 292
[6] Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, and Laurat J 2015 Nat. Commun. 6 7706
[7] Ren Z C, Lou Y C, Cheng Z M, Fan L, Ding J, Wang X L, and Wang H T 2021 Opt. Lett. 46 2300
[8] Chen P, Ji W, Wei B Y, Hu W, Chigrinov V, and Lu Y Q 2015 Appl. Phys. Lett. 107 241102
[9] Zhu X, Yu J, Wang F, Chen Y, Cai Y, and Korotkova O 2021 Opt. Lett. 46 2996
[10] Lou S, Zhou Y, Yuan Y, Lin T, Fan F, Wang X, Huang H, and Wen S 2019 Opt. Express 27 8596
[11] Wang D, Pan Y, Lü J Q, Li P P, Liu G G, Cai M Q, Li Y, Tu C, and Wang H T 2018 J. Opt. Soc. Am. B 35 2373
[12] Xu R, Chen P, Tang J, Duan W, Ge S J, Ma L L, Wu R, Hu W, and Lu Y Q 2018 Phys. Rev. Appl. 10 034061
[13] Zhao R, Huang L, Tang C, Li J, Li X, Wang Y, and Zentgraf T 2018 Adv. Opt. Mater. 6 1800490
[14] Tang Y, Intaravanne Y, Deng J, Li K F, Chen X, and Li G 2019 Phys. Rev. Appl. 12 024028
[15] Yue F, Wen D, Xin J, Gerardot B D, Li J, and Chen X 2016 ACS Photon. 3 1558
[16] Zhang Y, Yang X, and Gao J 2019 Phys. Rev. Appl. 11 064059
[17] Liu X, Monfared Y E, Pan R, Ma P, Cai Y, and Liang C 2021 Appl. Phys. Lett. 119 021105
[18] Han W, Yang Y, Cheng W, and Zhan Q 2013 Opt. Express 21 20692
[19] Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, and Sola Íñigo J 2017 Optica 4 520
[20] Radwell N, Hawley R D, Götte J B, and Franke-Arnold S 2016 Nat. Commun. 7 10564
[21] Sakakura M, Lei Y, Wang L, Yu Y H, and Kazansky P G 2020 Light: Sci. & Appl. 9 15
[22] Maurer C, Jesacher A, Fürhapter S, Bernet S, and Ritsch-Marte M 2007 New J. Phys. 9 78
[23] Chen P, Ge S J, Duan W, Wei B Y, Cui G X, Hu W, and Lu Y Q 2017 ACS Photon. 4 1333
[24] Cohen E, Larocque H, Bouchard F, Nejadsattari F, Gefen Y, and Karimi E 2019 Nat. Rev. Phys. 1 437
[25] Zhang Y H, Chen P, Ge S J, Wei T, Tang J, Hu W, and Lu Y Q 2020 Appl. Phys. Lett. 117 081101
[26] Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, and Zhao J 2016 Opt. Lett. 41 2205
[27] Fu S, Gao C, Wang T, Zhang S, and Zhai Y 2016 Opt. Lett. 41 5454
[28] Li D, Feng S, Nie S, Chang C, Ma J, and Yuan C 2019 J. Appl. Phys. 125 073105
[29] Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, and Fan D 2017 Sci. Rep. 7 44096
[30] Li H, Liu H, and Chen X 2019 Photon. Res. 7 1340
[31] Liu D, Liu S, Mazur L, Wang B, Lu P, Krolikowski W, and Sheng Y 2020 Appl. Phys. Lett. 116 051104
[32] Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, and Xu T 2021 Nat. Commun. 12 2230
[33] Li L, Chang C, Yuan C, Feng S, Nie S, Ren Z C, Wang H T, and Ding J 2018 Photon. Res. 6 1116
[34] Li D, Chang C, Nie S, Feng S, Ma J, and Yuan C 2018 Appl. Phys. Lett. 113 121101
[35] Wu H J, Zhao B, Rosales-Guzman C, Gao W, Shi B S, and Zhu Z Z 2020 Phys. Rev. Appl. 13 064041
[36] Liu H, Li H, Zheng Y, and Chen X 2018 Opt. Lett. 43 5981
[37] Li H, Liu H, Yang Y, Lu R, and Chen X 2021 Appl. Phys. Lett. 119 011104
[38] Saripalli R K, Ghosh A, Chaitanya N A, and Samanta G K 2019 Appl. Phys. Lett. 115 051101
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034201
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034201
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 034201
[4] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 034201
[5] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 034201
[6] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 034201
[7] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 034201
[8] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 034201
[9] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 034201
[10] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 034201
[11] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034201
[12] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 034201
[13] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 034201
[14] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 034201
[15] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 034201
Viewed
Full text


Abstract