FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands |
Hui Li1,2†, Haigang Liu2†, Yangfeifei Yang2, Ruifeng Lu1*, and Xianfeng Chen2,3,4,5* |
1Institute of Ultrafast Optical Physics, Department of Applied Physics & MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China 4Jinan Institute of Quantum Technology, Jinan 250101, China 5Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
|
|
Cite this article: |
Hui Li, Haigang Liu, Yangfeifei Yang et al 2022 Chin. Phys. Lett. 39 034201 |
|
|
Abstract Perfect vector beams are a class of special vector beams with invariant radius and intensity profiles under changing topological charges. However, with the limitation of current devices, the generation of these vector beams is limited in the visible and infrared wavebands. Herein, we generate perfect vector beams in the ultraviolet region assisted by nonlinear frequency conversion. Experimental and simulation results show that the radius of the generated ultraviolet perfect vector beams remains invariant and is thus independent of the topological charge. Furthermore, we measure the power of the generated ultraviolet perfect vector beams with the change of their topological charges. This study provides an alternative approach to generating perfect vector beams for ultraviolet wavebands and may promote their application to optical trapping and optical communication.
|
|
Received: 25 November 2021
Editors' Suggestion
Published: 01 March 2022
|
|
PACS: |
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.25.Ja
|
(Polarization)
|
|
|
|
|
[1] | Hnatovsky C, Shvedov V, Krolikowski W, and Rode A 2011 Phys. Rev. Lett. 106 123901 |
[2] | Zhao Y, Zhan Q, Zhang Y, and Li Y P 2005 Opt. Lett. 30 848 |
[3] | Chen Y and Cai Y 2014 Opt. Lett. 39 2549 |
[4] | Weng X, Du L, Shi P, and Yuan X 2017 Opt. Express 25 9039 |
[5] | Ndagano B, Nape I, Cox M A, Rosales-Guzman C, and Forbes A 2018 J. Lightwave Technol. 36 292 |
[6] | Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, and Laurat J 2015 Nat. Commun. 6 7706 |
[7] | Ren Z C, Lou Y C, Cheng Z M, Fan L, Ding J, Wang X L, and Wang H T 2021 Opt. Lett. 46 2300 |
[8] | Chen P, Ji W, Wei B Y, Hu W, Chigrinov V, and Lu Y Q 2015 Appl. Phys. Lett. 107 241102 |
[9] | Zhu X, Yu J, Wang F, Chen Y, Cai Y, and Korotkova O 2021 Opt. Lett. 46 2996 |
[10] | Lou S, Zhou Y, Yuan Y, Lin T, Fan F, Wang X, Huang H, and Wen S 2019 Opt. Express 27 8596 |
[11] | Wang D, Pan Y, Lü J Q, Li P P, Liu G G, Cai M Q, Li Y, Tu C, and Wang H T 2018 J. Opt. Soc. Am. B 35 2373 |
[12] | Xu R, Chen P, Tang J, Duan W, Ge S J, Ma L L, Wu R, Hu W, and Lu Y Q 2018 Phys. Rev. Appl. 10 034061 |
[13] | Zhao R, Huang L, Tang C, Li J, Li X, Wang Y, and Zentgraf T 2018 Adv. Opt. Mater. 6 1800490 |
[14] | Tang Y, Intaravanne Y, Deng J, Li K F, Chen X, and Li G 2019 Phys. Rev. Appl. 12 024028 |
[15] | Yue F, Wen D, Xin J, Gerardot B D, Li J, and Chen X 2016 ACS Photon. 3 1558 |
[16] | Zhang Y, Yang X, and Gao J 2019 Phys. Rev. Appl. 11 064059 |
[17] | Liu X, Monfared Y E, Pan R, Ma P, Cai Y, and Liang C 2021 Appl. Phys. Lett. 119 021105 |
[18] | Han W, Yang Y, Cheng W, and Zhan Q 2013 Opt. Express 21 20692 |
[19] | Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G, and Sola Íñigo J 2017 Optica 4 520 |
[20] | Radwell N, Hawley R D, Götte J B, and Franke-Arnold S 2016 Nat. Commun. 7 10564 |
[21] | Sakakura M, Lei Y, Wang L, Yu Y H, and Kazansky P G 2020 Light: Sci. & Appl. 9 15 |
[22] | Maurer C, Jesacher A, Fürhapter S, Bernet S, and Ritsch-Marte M 2007 New J. Phys. 9 78 |
[23] | Chen P, Ge S J, Duan W, Wei B Y, Cui G X, Hu W, and Lu Y Q 2017 ACS Photon. 4 1333 |
[24] | Cohen E, Larocque H, Bouchard F, Nejadsattari F, Gefen Y, and Karimi E 2019 Nat. Rev. Phys. 1 437 |
[25] | Zhang Y H, Chen P, Ge S J, Wei T, Tang J, Hu W, and Lu Y Q 2020 Appl. Phys. Lett. 117 081101 |
[26] | Li P, Zhang Y, Liu S, Ma C, Han L, Cheng H, and Zhao J 2016 Opt. Lett. 41 2205 |
[27] | Fu S, Gao C, Wang T, Zhang S, and Zhai Y 2016 Opt. Lett. 41 5454 |
[28] | Li D, Feng S, Nie S, Chang C, Ma J, and Yuan C 2019 J. Appl. Phys. 125 073105 |
[29] | Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, and Fan D 2017 Sci. Rep. 7 44096 |
[30] | Li H, Liu H, and Chen X 2019 Photon. Res. 7 1340 |
[31] | Liu D, Liu S, Mazur L, Wang B, Lu P, Krolikowski W, and Sheng Y 2020 Appl. Phys. Lett. 116 051104 |
[32] | Liu M, Huo P, Zhu W, Zhang C, Zhang S, Song M, Zhang S, Zhou Q, Chen L, Lezec H J, Agrawal A, Lu Y, and Xu T 2021 Nat. Commun. 12 2230 |
[33] | Li L, Chang C, Yuan C, Feng S, Nie S, Ren Z C, Wang H T, and Ding J 2018 Photon. Res. 6 1116 |
[34] | Li D, Chang C, Nie S, Feng S, Ma J, and Yuan C 2018 Appl. Phys. Lett. 113 121101 |
[35] | Wu H J, Zhao B, Rosales-Guzman C, Gao W, Shi B S, and Zhu Z Z 2020 Phys. Rev. Appl. 13 064041 |
[36] | Liu H, Li H, Zheng Y, and Chen X 2018 Opt. Lett. 43 5981 |
[37] | Li H, Liu H, Yang Y, Lu R, and Chen X 2021 Appl. Phys. Lett. 119 011104 |
[38] | Saripalli R K, Ghosh A, Chaitanya N A, and Samanta G K 2019 Appl. Phys. Lett. 115 051101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|