Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 033401    DOI: 10.1088/0256-307X/39/3/033401
ATOMIC AND MOLECULAR PHYSICS |
High Energy Inner Shell Photoelectron Diffraction in CO$_2$
Xiaohong Li1,2, Bocheng Ding1,2, Yunfei Feng1,2, Ruichang Wu1,2, Lifang Tian1,2, Jianye Huang1,2, and Xiaojing Liu1,2*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
Cite this article:   
Xiaohong Li, Bocheng Ding, Yunfei Feng et al  2022 Chin. Phys. Lett. 39 033401
Download: PDF(823KB)   PDF(mobile)(926KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photoelectron diffraction is an effective tool to probe the structures of molecules. The higher the photoelectron kinetic energy is, the higher order the diffraction pattern is disclosed in. Up to date, either the multi-atomic molecule with the photoelectron kinetic energy below 150 eV or the diatomic molecule with 735 eV photoelectron has been experimentally reported. In this study, we measured the diffraction pattern of C $1s$ and O $1s$ photoelectrons in CO$_2$ with 319.7 and 433.5 eV kinetic energies, respectively. The extracted C–O bond lengths are longer than the C–O bond length at the ground state, which is attributed to the asymmetric fragmentation that preferentially occurs at the longer chemical bond side during the zero-energy asymmetric vibration.
Received: 29 November 2021      Published: 01 March 2022
PACS:  34.50.-s (Scattering of atoms and molecules)  
  33.80.-b (Photon interactions with molecules)  
  34.80.Gs (Molecular excitation and ionization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/033401       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/033401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaohong Li
Bocheng Ding
Yunfei Feng
Ruichang Wu
Lifang Tian
Jianye Huang
and Xiaojing Liu
[1] Yang J et al. 2018 Science 361 64
[2] Wang L et al. 2018 Nano Lett. 18 5172
[3] Glownia J et al. 2016 Phys. Rev. Lett. 117 153003
[4] Itatani J et al. 2004 Nature 432 867
[5] Erk B et al. 2014 Science 345 288
[6] Wolter B et al. 2016 Science 354 308
[7] Liu X J et al. 2008 Phys. Rev. Lett. 101 023001
[8] Lucchese R R et al. 2012 J. Phys. B 45 190201
[9] Kazama M et al. 2012 J. Electron Spectrosc. Relat. Phenom. 185 535
[10] Williams J B et al. 2012 Phys. Rev. Lett. 108 233002
[11] Fukuzawa H et al. 2019 J. Chem. Phys. 150 174306
[12] Adachi J I et al. 2009 J. Phys.: Conf. Ser. 190 012049
[13] Lucchese R R et al. 2007 J. Electron Spectrosc. Relat. Phenom. 155 95
[14] Tsuru S et al. 2014 Chem. Phys. Lett. 608 152
[15] Saito N et al. 2005 J. Phys. B 38 L277
[16] Liu X J et al. 2007 J. Phys. B 40 485
[17] Landers A et al. 2001 Phys. Rev. Lett. 87 013002
[18] Fadley C et al. 1997 Prog. Surf. Sci. 54 341
[19] Wider J et al. 2001 Phys. Rev. Lett. 86 2337
[20]Fadley C S 1992 The study of Surface Structures by Photoelectron Diffraction and Auger Electron Diffraction (Boston, MA: Springer) pp 421–518
[21] Kawai J et al. 2008 Surf. Interface Anal. 40 1579
[22] Nakajima K et al. 2015 Sci. Rep. 5 14065
[23] Kastirke G et al. 2020 Phys. Rev. X 10 021052
[24] Grundmann S et al. 2020 Science 370 339
[25] Akoury D et al. 2007 Science 318 949
[26] Tsuru S et al. 2014 J. Phys. B 47 071002
[27] Song S et al. 2019 Phys. Rev. A 99 022511
[28] Miron C and Morin P 2009 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detectors Associated Equipment 601 66
[29] Miron C et al. 1997 Rev. Sci. Instrum. 68 3728
[30] Le G K et al. 2002 Rev. Sci. Instrum. 73 3885
[31] Liu X J, Nicolas C, and Miron C 2013 Rev. Sci. Instrum. 84 033105
[32] Prümper G and Ueda K 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 350
[33] Neeb M et al. 1998 J. Electron Spectrosc. Relat. Phenom. 88–91 19
[34] Miyabe S et al. 2009 Phys. Rev. A 79 053401
[35] Domcke W and Cederbaum L S 1977 Chem. Phys. 25 189
[36] Kivimäki A et al. 1997 Phys. Rev. Lett. 79 998
[37] Hatamoto T et al. 2007 J. Electron Spectrosc. Relat. Phenom. 155 54
Related articles from Frontiers Journals
[1] Ming-Ming Zhao, Li-Hang Li, Bo-Wen Si, Bin-Bin Wang, Bina Fu, and Yong-Chang Han. Three-Body Recombination of Cold $^{3}$He–$^{3}$He–T$^-$ System[J]. Chin. Phys. Lett., 2022, 39(8): 033401
[2] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 033401
[3] Yong Gao, Xiao-Long Zhu, Shao-Feng Zhang, Rui-Tian Zhang, Wen-Tian Feng, Da-Long Guo, Bin Li, Dong-Mei Zhao, Han-Bing Wang, Zhong-Kui Huang, Shun-Cheng Yan, Dong-Bin Qian, Xin-Wen Ma. Signature of Single Binary Encounter in Intermediate Energy He$^{2+}$–Ar Collisions$^*$[J]. Chin. Phys. Lett., 2016, 33(07): 033401
[4] LU Chen-Wen, AN Wen-Fang, SUN Shi-Yan, JIA Xiang-Fu. Nucleus–Nucleus Effects in Fully Differential Cross Sections for Energetic C6++He Collisions with Small Momentum Transfer[J]. Chin. Phys. Lett., 2015, 32(09): 033401
[5] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 033401
[6] DENG Xue-Wei, WANG Fang, JIA Huai-Ting, XIANG Yong, FENG Bin, LI Ke-Yu, ZHOU Li-Dan. Temporal, Spectral and Spatial Characterization of High-Energy Laser Pulse with Small Bandwidth Propagating through Long Path[J]. Chin. Phys. Lett., 2012, 29(12): 033401
[7] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 033401
[8] WU Ji-Cheng, WANG Mei-Shan**, YANG Chuan-Lu, LI Xiao-Hu, CHEN Xiao-Qiong . Theoretical Study of the Stereodynamics of the Reaction C(3P)+CH(X2Π) and Its Isotopic Variants[J]. Chin. Phys. Lett., 2011, 28(6): 033401
[9] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng, YU Ke . Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State[J]. Chin. Phys. Lett., 2011, 28(4): 033401
[10] BAI Xue, ZHAO Jun, WEI Bao-Ren, ZHANG Xue-Mei, **. Single-Electron Detachment for Ti-, Fe-, Co-, Ni-, and Cu-, in Collision with Ar[J]. Chin. Phys. Lett., 2010, 27(11): 033401
[11] WANG Ping. Effect of Reagent Vibrational and Rotational Excitation on the F+H2 Reaction: Theoretical Study of the Stereodynamics Using Quasi-Classical Trajectory Method[J]. Chin. Phys. Lett., 2010, 27(8): 033401
[12] HU Qiu-Bo, ZHANG Yong-Sheng, SUN Jin-Feng. Elastic Scattering of Ultracold 23Na and 39K Atoms in the Singlet State[J]. Chin. Phys. Lett., 2010, 27(2): 033401
[13] DU Bing-Ge, SUN Jin-Feng, ZHANG Ji-Cai, ZHANG Ying, LI Wei, ZHU Zun-Lue. Variable Phase Method Used to Calculate Ultracold Scattering Properties of 7Li33Cs[J]. Chin. Phys. Lett., 2008, 25(10): 033401
[14] MA Er-Jun, , MA Yu-Gang, CAI Xiang-Zhou, FANG De-Qing, SHEN Wen-Qing, TIAN Wen-Dong. Electron Scattering by C4H10 and C6H6 in the Energy Range 100--1000eV[J]. Chin. Phys. Lett., 2008, 25(1): 033401
[15] ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Bright/Dark Solitons in Bose--Einstein Condensates with Time-Dependent Scattering Length and External Potential[J]. Chin. Phys. Lett., 2008, 25(1): 033401
Viewed
Full text


Abstract