Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 030302    DOI: 10.1088/0256-307X/39/3/030302
GENERAL |
Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler
Shaowei Li1,2,3, Daojin Fan1,2,3, Ming Gong1,2,3, Yangsen Ye1,2,3, Xiawei Chen1,2,3, Yulin Wu1,2,3, Huijie Guan1,2,3, Hui Deng1,2,3, Hao Rong1,2,3, He-Liang Huang1,2,3, Chen Zha1,2,3, Kai Yan1,2,3, Shaojun Guo1,2,3, Haoran Qian1,2,3, Haibin Zhang1,2,3, Fusheng Chen1,2,3, Qingling Zhu1,2,3, Youwei Zhao1,2,3, Shiyu Wang1,2,3, Chong Ying1,2,3, Sirui Cao1,2,3, Jiale Yu1,2,3, Futian Liang1,2,3, Yu Xu1,2,3, Jin Lin1,2,3, Cheng Guo1,2,3, Lihua Sun1,2,3, Na Li1,2,3, Lianchen Han1,2,3, Cheng-Zhi Peng1,2,3, Xiaobo Zhu1,2,3*, and Jian-Wei Pan1,2,3
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
3Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cite this article:   
Shaowei Li, Daojin Fan, Ming Gong et al  2022 Chin. Phys. Lett. 39 030302
Download: PDF(1427KB)   PDF(mobile)(2076KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing. Here, we propose and realize an all-microwave parametric controlled-Z (CZ) gates by coupling strength modulation in a superconducting Transmon qubit system with tunable couplers. After optimizing the design of the tunable coupler together with the control pulse numerically, we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%$ \pm 0.34$% and the control error being 0.1%. We note that our CZ gates are not affected by pulse distortion and do not need pulse correction, providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit. With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future, our scheme draws a blueprint for the high-integrable quantum hardware design.
Received: 06 January 2022      Express Letter Published: 10 February 2022
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Xa (Optical tests of quantum theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/030302       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/030302
[1] Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172
[2] Fowler A G, Mariantoni M, Martinis J M, and Cleland A N 2012 Phys. Rev. A 86 032324
[3] Chen Z, Kelly J, Quintana C, Barends R, Campbell B, Chen Y, Chiaro B, Dunsworth A, Fowler A G, Lucero E, Jeffrey E, Megrant A, Mutus J, Neeley M, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, and Martinis J M 2016 Phys. Rev. Lett. 116 020501
[4] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B et al. 2014 Nature 508 500
[5] Negirneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, M, Marques S M, Marques J F, Vlothuizen W J, Beekman M et al. 2021 Phys. Rev. Lett. 126 220502
[6] Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C et al. 2019 npj Quantum Inf. 5 1
[7] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D et al. 2021 Phys. Rev. X 11 021058
[8] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al. 2014 Phys. Rev. Lett. 113 220502
[9] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X et al. 2020 Phys. Rev. Appl. 14 024070
[10] Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, and Eichler C 2020 Phys. Rev. Lett. 125 240502
[11] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J et al. 2020 Phys. Rev. Lett. 125 240503
[12] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L et al. 2021 Chin. Phys. Lett. 38 100301
[13] McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007
[14] Sete E A, Didier N, Chen A Q, Kulshreshtha S, Manenti R, and Poletto S 2021 Phys. Rev. Appl. 16 024050
[15] Kosen S, Li H X, Rommel M, Shiri D, Warren C, Grönberg L, Salonen J, Abad T, Biznárová J, Caputo M et al. 2021 arXiv:2112.02717 [quant-ph]
[16] Ganzhorn M, Salis G, Egger D, Fuhrer A, Mergenthaler M, Müller C, Müller P, Paredes S, Pechal M, Werninghaus M et al. 2020 Phys. Rev. Res. 2 033447
[17] Sheldon S, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. A 93 060302
[18] Kandala A, Wei K, Srinivasan S, Magesan E, Carnevale S, Keefe G, Klaus D, Dial O, and McKay D 2021 Phys. Rev. Lett. 127 130501
[19] Barends R, Quintana C, Petukhov A, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F et al. 2019 Phys. Rev. Lett. 123 210501
[20] Foxen B, Mutus J, Lucero E, Jeffrey E, Sank D, Barends R, Arya K, Burkett B, Chen Y, Chen Z et al. 2019 Supercond. Sci. Technol. 32 015012
[21] Rol M A, Ciorciaro L, Malinowski F K, Tarasinski B M, Sagastizabal R E, Bultink C C, Salathe Y, Haandbæk N, Sedivy J, and DiCarlo L 2020 Appl. Phys. Lett. 116 054001
[22] Andersen C K, Remm A, Lazar S, Krinner S, Heinsoo J, Besse J C, Gabureac M, Wallraff A, and Eichler C 2019 npj Quantum Inf. 5 69
[23] Nelder J A and Mead R 1965 Comput. J. 7 308
[24] McKinnon K I 1998 SIAM J. Optim. 9 148
[25] Rol M, Bultink C C, O'Brien T E, De Jong S, Theis L S, Fu X, Luthi F, Vermeulen R F, De Sterke J, Bruno A et al. 2017 Phys. Rev. Appl. 7 041001
[26] Sendelbach S, Hover D, Mück M, and McDermott R 2009 Phys. Rev. Lett. 103 117001
[27] Fried E S, Sivarajah P, Didier N, Sete E A, da S M P, Johnson B R, and Ryan C A 2019 arXiv:1908.11370 [quant-ph]
[28] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J et al. 2012 Appl. Phys. Lett. 100 113510
[29] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, and Wineland D J 2008 Phys. Rev. A 77 012307
[30] Epstein J M, Cross A W, Magesan E, and Gambetta J M 2014 Phys. Rev. A 89 062321
[31] Proctor T, Rudinger K, Young K, Sarovar M, and Blume-Kohout R 2017 Phys. Rev. Lett. 119 130502
[32] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595
[33] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A et al. 2019 Nature 574 505
[34] Dai D and Bowers J E 2014 Nanophotonics 3 283
[35] Kobe O B, Chuma J, Jamisola J R, and Chose M 2017 Eng. Sci. Technol. Int. J. 20 460
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 030302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[3] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 030302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[5] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030302
[6] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 030302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 030302
[8] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 030302
[9] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030302
[10] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 030302
[11] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 030302
[12] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 030302
[13] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 030302
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 030302
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 030302
Viewed
Full text


Abstract