Chin. Phys. Lett.  2022, Vol. 39 Issue (3): 030301    DOI: 10.1088/0256-307X/39/3/030301
GENERAL |
Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench
Heng-Xi Ji1, Lin-Han Mo1, and Xin Wan1,2*
1Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
2CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Heng-Xi Ji, Lin-Han Mo, and Xin Wan 2022 Chin. Phys. Lett. 39 030301
Download: PDF(548KB)   PDF(mobile)(654KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate evolution of entanglement spectra of the Haldane model for Chern insulators upon a sudden quench within the same topological phase. In particular, we focus on the location of the entanglement spectrum crossing, which signifies the bulk topology. It is shown that the coplanarity condition for the pseudomagnetic field of the model, which can be used to determine the crossing in the equilibrium case, needs to be relaxed. We analytically derive the non-equilibrium condition with the help of an edge-state wave function ansatz and a dynamically induced length-scale cutoff. With spectral analyses, it is realized that the oscillatory behavior of the crossing is dominated by the interband excitations at the van Hove singularities.
Received: 04 December 2021      Published: 01 March 2022
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  02.40.-k (Geometry, differential geometry, and topology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/3/030301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I3/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Heng-Xi Ji
Lin-Han Mo
and Xin Wan
[1] Kinoshita T, Wenger T, and Weiss D S 2006 Nature 440 900
[2] Hofferberth S, Lesanovsky I, Fischer B, Schumm T, and Schmiedmayer J 2007 Nature 449 324
[3] Trotzky S, Chen Y A, Flesch A, McCulloch I P, Schollwöck U, Eisert J, and Bloch I 2012 Nat. Phys. 8 325
[4] Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith D A, Demler E, and Schmiedmayer J 2012 Science 337 1318
[5] Cheneau M, Barmettler P, Poletti D, Endres M, Schauss P, Fukuhara T, Gross C, Bloch I, Kollath C, and Kuhr S 2012 Nature 481 484
[6] Meinert F, Mark M J, Kirilov E, Lauber K, Weinmann P, Daley A J, and Nägerl H C 2013 Phys. Rev. Lett. 111 053003
[7] Langen T, Geiger R, Kuhnert M, Rauer B, and Schmiedmayer J 2013 Nat. Phys. 9 640
[8] Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C, Bloch I, and Kuhr S 2013 Nat. Phys. 9 235
[9] Fukuhara T, Schauß P, Endres M, Hild S, Cheneau M, Bloch I, and Gross C 2013 Nature 502 76
[10] Langen T, Erne S, Geiger R, Rauer B, Schweigler T, Kuhnert M, Rohringer W, Mazets I E, Gasenzer T, and Schmiedmayer J 2015 Science 348 207
[11] Polkovnikov A, Sengupta K, Silva A, and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[12] Gogolin C and Eisert J 2016 Rep. Prog. Phys. 79 056001
[13] Vidmar L and Rigol M 2016 J. Stat. Mech.: Theory Exp. 2016 064007
[14] Essler F H L and Fagotti M 2016 J. Stat. Mech.: Theory Exp. 2016 064002
[15] Calabrese P and Cardy J 2016 J. Stat. Mech.: Theory Exp. 2016 064003
[16] Calabrese P and Cardy J 2005 J. Stat. Mech.: Theory Exp. 2005 P04010
[17] Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
[18] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[19] Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405
[20] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[21] Swingle B and Senthil T 2012 Phys. Rev. B 86 045117
[22] Qi X L, Katsura H, and Ludwig A W W 2012 Phys. Rev. Lett. 108 196402
[23] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[24] Caio M D, Cooper N R, and Bhaseen M J 2015 Phys. Rev. Lett. 115 236403
[25] McGinley M and Cooper N R 2018 Phys. Rev. Lett. 121 090401
[26] McGinley M and Cooper N R 2019 Phys. Rev. B 99 075148
[27] Gong Z and Ueda M 2018 Phys. Rev. Lett. 121 250601
[28] Huang Z and Arovas D P 2012 arXiv:1205.6266 [cond-mat.str-el]
[29] Chung M C and Peschel I 2001 Phys. Rev. B 64 064412
[30] Peschel I 2003 J. Phys. A 36 L205
[31] Mo L H, Zhang Q L, and Wan X 2020 Chin. Phys. Lett. 37 060301
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 030301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030301
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 030301
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 030301
[5] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030301
[6] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 030301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 030301
[8] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 030301
[9] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030301
[10] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 030301
[11] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 030301
[12] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 030301
[13] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 030301
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 030301
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 030301
Viewed
Full text


Abstract