Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 027401    DOI: 10.1088/0256-307X/39/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O
Bin-Bin Ruan1,2*, Meng-Hu Zhou1,2, Qing-Song Yang2,3, Ya-Dong Gu2,3, Ming-Wei Ma2, Gen-Fu Chen2,3, and Zhi-An Ren2,3*
1Songshan Lake Materials Laboratory, Dongguan 523808, China
2Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang et al  2022 Chin. Phys. Lett. 39 027401
Download: PDF(2430KB)   PDF(mobile)(2621KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the synthesis, crystal structure, and superconductivity of Ti$_4$Ir$_2$O. The title compound crystallizes in an $\eta$-carbide type structure of the space group $Fd\bar{3}m$ (No. 227), with lattice parameters $a=b=c=11.6194(1)$ Å. The superconducting temperature $T_{\rm c}$ is found to be 5.1–5.7 K. Most surprisingly, Ti$_4$Ir$_2$O hosts an upper critical field of 16.45 T, which is far beyond the Pauli paramagnetic limit. Strong coupled superconductivity with evidences for multigap is revealed by the measurements of heat capacity and upper critical field. First-principles calculations suggest that the density of states near the Fermi level originates from the hybridization of Ti-3$d$ and Ir-5$d$ orbitals, and the effect of spin-orbit coupling on the Fermi surfaces is prominent. Large values of the Wilson ratio ($R_{\rm W} \sim 3.9$), the Kadowaki–Woods ratio [$A/\gamma^2 \sim 9.0 \times 10^{-6}$ $µ\Omega\cdot$cm/(mJ$\cdot$mol$^{-1}\cdot$K$^{-1}$)$^2$], and the Sommerfeld coefficient ($\gamma = 33.74$ mJ$\cdot$mol$^{-1}\cdot$K$^{-2}$) all suggest strong electron correlations (similar to heavy fermion systems) in Ti$_4$Ir$_2$O. The violation of Pauli limit is possibly due to a combination of strong-coupled superconductivity and large spin-orbit scattering. With these intriguing behaviors, Ti$_4$Ir$_2$O serves as a candidate for unconventional superconductor.
Received: 14 December 2021      Editors' Suggestion Published: 29 January 2022
PACS:  74.25.-q (Properties of superconductors)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.25.Bt (Thermodynamic properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/027401       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin-Bin Ruan
Meng-Hu Zhou
Qing-Song Yang
Ya-Dong Gu
Ming-Wei Ma
Gen-Fu Chen
and Zhi-An Ren
[1] Gurevich A 2011 Nat. Mater. 10 255
[2] Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, and Larbalestier D C 2019 Nature 570 496
[3] Stewart G 2015 Physica C 514 28
[4]Poole C K, Farach H A, and Creswick R J 1999 Handbook of Superconductivity (Amsterdam: Elsevier)
[5] Stewart G, Fisk Z, Willis J, and Smith J 1984 Phys. Rev. Lett. 52 679
[6] Tao Q, shen J Q, Li L J et al 2009 Chin. Phys. Lett. 26 097401
[7] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E, Gribanov A, Seropegin Y, Noel H, Sigrist M, and Rogl P 2004 Phys. Rev. Lett. 92 027003
[8] Gupta R, Ying T, Qi Y, Hosono H, and Khasanov R 2021 Phys. Rev. B 103 174511
[9] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M et al. 2015 Phys. Rev. X 5 011013
[10] Zhi H, Imai T, Ning F, Bao J K, and Cao G H 2015 Phys. Rev. Lett. 114 147004
[11] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. B 91 020506
[12] Cao Y, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 595 526
[13] Lu Y, Takayama T, Bangura A F, Katsura Y, Hashizume D, and Takagi H 2014 J. Phys. Soc. Jpn. 83 023702
[14] Okuda K, Kitagawa M, Sakakibara T, and Date M 1980 J. Phys. Soc. Jpn. 48 2157
[15] Chan Y C, Yip K Y, Cheung Y W, Chan Y T, Niu Q, Kajitani J, Higashinaka R, Matsuda T D, Yanase Y, Aoki Y, Lai K T, and Goh S K 2018 Phys. Rev. B 97 104509
[16] Taylor A and Sachs K 1952 Nature 169 411
[17] Kuo K 1953 Acta Metall. 1 301
[18] Newsam J, Jacobson A, McCandlish L, and Polizzotti R 1988 J. Solid State Chem. 75 296
[19] Jeitschko W, Holleck H, Nowotny H, and Benesovsky F 1964 Monatsh. Chem. - Chem. Mon. 95 1004
[20] Dubrovinskaia N, Dubrovinsky L, Saxena S, Selleby M, and Sundman B 1999 J. Alloys Compd. 285 242
[21] Zavalii I, Verbovytskyi Y, Berezovets V, Shtender V, Pecharsky V, and Lyutyi P 2017 Mater. Sci. 53 306
[22] Nagai M, Zahidul A M, and Matsuda K 2006 Appl. Catal. A 313 137
[23]Ku H and Johnston D 1984 Chin. J. Phys. 22 59
[24] Ma K, Lago J, and von Rohr F O 2019 J. Alloys Compd. 796 287
[25] Ma K, Gornicka K, Lefèvre R, Yang Y, Rønnow H M, Jeschke H O, Klimczuk T, and von Rohr F O 2021 ACS Mater. Au 1 55
[26] Matthias B, Geballe T, and Compton V 1963 Rev. Mod. Phys. 35 1
[27] Zegler S 1965 J. Phys. Chem. Solids 26 1347
[28] Toby B 2001 J. Appl. Crystallogr. 34 210
[29] Ruan B B, Yang Q S, Zhou M H, Chen G F, and Ren Z A 2021 J. Alloys Compd. 868 159230
[30] Prozorov R and Kogan V G 2018 Phys. Rev. Appl. 10 014030
[31] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal C A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[32] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901
[33] Giannozzi P, Baseggio O, Bonfa P, Brunato D, Car R, Carnimeo I, Cavazzoni C, de Gironcoli S, Delugas P, Ruffino F F, Ferretti A, Marzari N, Timrov I, Urru A, and Baroni S 2020 J. Chem. Phys. 152 154105
[34] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, and Burke K 2008 Phys. Rev. Lett. 100 136406
[35] Dal C A 2014 Comput. Mater. Sci. 95 337
[36] Otero-de-la-Roza A, Johnson E R, and Luana V 2014 Comput. Phys. Commun. 185 1007
[37] Fuhr J D, Roura-Bas P, and Aligia A A 2021 Phys. Rev. B 103 035126
[38] Pizzi G, Vitale V, Arita R, Bluegel S, Freimuth F, Geranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibanez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa I J, Nohara Y, Nomura Y, Paulatto L, Ponce S, Ponweiser T, Qiao J, Thoele F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[39]Okamoto H, Massalski T et al. 1990 Binary Alloy Phase Diagrams (Materials Park, OH: ASM International)
[40] Xu C, Wang H, Tian H, Shi Y, Li Z A, Xiao R, Shi H, Yang H, and Li J 2021 Chin. Phys. B 30 077403
[41] Carbotte J 1990 Rev. Mod. Phys. 62 1027
[42] Fisk Z and Webb G 1976 Phys. Rev. Lett. 36 1084
[43] Takayama T, Kuwano K, Hirai D, Katsura Y, Yamamoto A, and Takagi H 2012 Phys. Rev. Lett. 108 237001
[44]Mott N F, Jones H, Jones H, and Jones H 1958 The Theory of the Properties of Metals and Alloys (Courier Dover Publications)
[45] Mott N F 1964 Adv. Phys. 13 325
[46] Werthamer N, Helfand E, and PC H 1966 Phys. Rev. 147 288
[47] Bud'ko S, Petrovic C, Lapertot G, Cunningham C, Canfield P, Jung M, and Lacerda A 2001 Phys. Rev. B 63 220503
[48] Suderow H, Tissen V, Brison J, Martı́nez J, and Vieira S 2005 Phys. Rev. Lett. 95 117006
[49] De Faria L R, Ferreira P P, Correa L E, Eleno L T, Torikachvili M S, and Machado A J 2021 Supercond. Sci. Technol. 34 065010
[50] Gurevich A 2003 Phys. Rev. B 67 184515
[51] McMillan W L 1968 Phys. Rev. 167 331
[52] Mercure J F, Bangura A F, Xu X, Wakeham N, Carrington A, Walmsley P, Greenblatt M, and Hussey N E 2012 Phys. Rev. Lett. 108 187003
[53] Ishikawa H, Wedig U, Nuss J, Kremer R K, Dinnebier R, Blankenhorn M, Pakdaman M, Matsumoto Y, Takayama T, Kitagawa K, and Takagi H 2019 Inorg. Chem. 58 12888
[54] Mu Q G, Ruan B B, Zhao K, Pan B J, Liu T, Shan L, Chen G F, and Ren Z A 2018 Sci. Bull. 63 952
[55] Altarawneh M, Harrison N, Li G, Balicas L, Tobash P, Ronning F, and Bauer E 2012 Phys. Rev. Lett. 108 066407
[56] Anand V K, Adroja D T, and Hillier A D 2012 Phys. Rev. B 85 014418
[57] Tong P, Sun Y P, Zhu X B, and Song W H 2006 Phys. Rev. B 73 245106
[58] Steglich F, Aarts J, Bredl C, Lieke W, Meschede D, Franz W, and Schafer H 1979 Phys. Rev. Lett. 43 1892
[59] Ma K, Lefèvre R, Gornicka K, Jeschke H O, Zhang X, Guguchia Z, Klimczuk T, and von Rohr F O 2021 Chem. Mater. 33 8722
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 027401
[2] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 027401
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 027401
[4] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 027401
[5] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 027401
[6] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 027401
[7] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 027401
[8] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 027401
[9] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 027401
[10] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 027401
[11] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 027401
[12] Gaoning Zhang, Xianbiao Shi, Xiaolei Liu, Wei Xia, Hao Su, Leiming Chen, Xia Wang, Na Yu, Zhiqiang Zou, Weiwei Zhao, and Yanfeng Guo. de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions[J]. Chin. Phys. Lett., 2020, 37(8): 027401
[13] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 027401
[14] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 027401
[15] Shuai Zhang, Mo-Ran Gao, Huan-Yan Fu, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Electric Field Induced Permanent Superconductivity in Layered Metal Nitride Chlorides HfNCl and ZrNCl[J]. Chin. Phys. Lett., 2018, 35(9): 027401
Viewed
Full text


Abstract