Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 027301    DOI: 10.1088/0256-307X/39/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Theory for Anisotropic Magnetoresistance in Materials with Two Vector Order Parameters
X. R. Wang1,2*
1Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
2HKUST Shenzhen Research Institute, Shenzhen 518057, China
Cite this article:   
X. R. Wang 2022 Chin. Phys. Lett. 39 027301
Download: PDF(304KB)   PDF(mobile)(426KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Anisotropic magnetoresistance (AMR) and related planar Hall resistance (PHR) are ubiquitous phenomena of magnetic materials. Although the universal angular dependences of AMR and PHR in magnetic polycrystalline materials with one order parameter are well known, no similar universal relation for other class of magnetic materials are known to date. Here a general theory of galvanomagnetic effects in magnetic materials is presented with two vector order parameters, such as magnetic single crystals with a dominated crystalline axis or polycrystalline non-collinear ferrimagnetic materials. It is shown that AMR and PHR have a universal angular dependence. In general, both longitudinal and transverse resistivity are non-reciprocal in the absence of inversion symmetry: Resistivity takes different values when the current is reversed. Different from simple magnetic polycrystalline materials where AMR and PHR have the same magnitude, and $\pi/4$ out of phase, the magnitudes of AMR and PHR of materials with two vector order parameters are not the same in general, and the phase difference is not $\pi/4$. Instead of $\pi$ periodicity of the usual AMR and PHR, the periodicities of materials with two order parameters are $2\pi$.
Received: 14 December 2021      Express Letter Published: 06 January 2022
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/027301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
X. R. Wang
[1] Thomson W 1857 Proc. R. Soc. London 8 546
[2]Campbell I A and Fert A 1982 Transport Properties of Ferromagnets, in Handbook of Ferromagnetic Materials (New York: Elsevier) vol 3 chap 9 p 747
[3]O'Handley R C 2000 Modern Magnetic Materials: Principles and Applications (New York: Wiley)
[4] Campbell I A, Fert A, and Jaoul O 1970 J. Phys. C 3 S95
[5] Kokado S, Tsunoda M, Harigaya K, and Sakuma A 2012 J. Phys. Soc. Jpn. 81 024705
[6] Kokado S and Tsunoda M 2013 Adv. Mater. Res. 750–752 978
[7] Smit J 1951 Physica 17 612
[8] McGuire T R and Potter R 1975 IEEE Trans. Magn. 11 1018
[9] McGuire T R, Aboafand J A, and Klokholm E 1984 IEEE Trans. Magn. 20 972
[10] O'Handley R C 1978 Phys. Rev. B 18 2577
[11] Wisniewski P 2007 Appl. Phys. Lett. 90 192106
[12] Zeng F L, Ren Z Y, Li Y, Zeng J Y, Jia M W, Miao J, Hoffmann A, Zhang W, Wu Y Z, and Yuan Z 2020 Phys. Rev. Lett. 125 097201
[13] Nadvornik L, Borchert M, Brandt L, Schlitz R, de Mare K A, Vyborny K, Mertig I, Jakob G, Klaui M, Goennenwein S T B, Wolf M, Woltersdorf G, and Kampfrath T 2021 Phys. Rev. X 11 021030
[14] Bauer G E W 2021 Sci. Chin. Phys. Mech. & Astron. 64 217531
[15] De Ranieri E, Rushforth A W, Vyborny K, Rana U, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Irvine A C, Wunderlich J, and Jungwirth T 2008 New J. Phys. 10 065003
[16] Zhang Y, Zhang H W, and Wang X R 2016 Europhys. Lett. 113 47003
[17] Tondra M, Lottis D K, Riggs K T, Chen Y, Dahlberg E D, and Prinz G A 1993 J. Appl. Phys. 73 6393
[18] van Gorkom R P, Caro J, Klapwijk T M, and Radelaar S 2001 Phys. Rev. B 63 134432
[19] Limmer W, Glunk M, Daeubler J, Hummel T, Schoch W, Sauer R, Bihler C, Huebl H, Brandt M S, and Goennenwein S T B 2006 Phys. Rev. B 74 205205
[20] Limmer W, Daeubler J, Dreher L, Glunk M, Schoch W, Schwaiger S, and Sauer R 2008 Phys. Rev. B 77 205210
[21] Bason Y, Hoffman J, Ahn C H, and Klein L 2009 Phys. Rev. B 79 092406
[22] Naftalis N, Kaplan A, Schultz M, Vaz C A F, Moyer J A, Ahn C H, and Klein L 2011 Phys. Rev. B 84 094441
[23] Ding Z, Li J X, Zhu J, Ma T P, Won C, and Wu Y Z 2013 J. Appl. Phys. 113 17B103
[24] Hupfauer T, Matos-Abiague A, Gmitra M, Schiller F, Loher J, Bougeard D, Back C H, Fabian J, and Weiss D 2015 Nat. Commun. 6 7374
[25] Wu H T, Hu X C, and Wang X R 2022 Sci. Chin. Phys. Mech. Astron. (in press) (arXiv:2103.16052 [cond-mat.mes-hall])
[26]Sakurai J J and Tuan S F 1994 Modern Quantum Mechanics revised edn (London: Addison Wesley Longman) section 3.10
[27] Zhang Y, Wang X S, Yuan H Y, Kang S S, Zhang H W, and Wang X R 2017 J. Phys.: Condens. Matter 29 095806
[28]Carmeli M 2001 Classical Fields: General Relativity and Gauge Theory (Singapore: World Scientific) sections 2.9 and 3.1
[29] Wang X R 2021 Commun. Phys. 4 55
[30] Zhang Y, Liu Q, Miao B F, Ding H F, and Wang X R 2019 Phys. Rev. B 99 064424
Viewed
Full text


Abstract