FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor |
Ming-Xiao Wang, Ping-Xue Li*, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao |
Institute of Ultrashort Pulsed Laser and Application, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
|
Cite this article: |
Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu et al 2022 Chin. Phys. Lett. 39 024201 |
|
|
Abstract We report an all-fiberized chirped pulse amplification system without any bulk devices. The stretcher and compressor are chirped fiber Bragg gratings inscribed in a 6/125 µm single-mode fiber and a 30/250 µm large-mode-area fiber. The fabrication system of chirped fiber Bragg gratings was designed and built by ourselves. The width of the linear exposure spot was controlled according to the different fiber sizes to improve the fabrication quality, and the parameters of chirped fiber Bragg gratings were fine-tuned during the fabrication to achieve the overall system's spectral matching. Two fiber circulators with the same fiber sizes as the chirped fiber Bragg gratings were employed to auxiliarily achieve the pulse stretching and compression. The dispersion accumulations provided by the stretcher and compressor are 129.8 ps and 90.8 ps. The power amplifiers were composed of the two-stage 10/130 µm fiber pre-amplifier and the 30/250 µm fiber main amplifier. The proposed chirped pulse amplification system with no spatial light is the true sense of an all-fiberized chirped pulse amplification structure and shows the main trend in development of ultrashort pulse fiber lasers.
|
|
Received: 21 November 2021
Published: 29 January 2022
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.81.Wg
|
(Other fiber-optical devices)
|
|
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
|
|
|
[1] | Yu H L, Wang X L, Su R T, Zhou P, and Chen J B 2016 Laser & Optoelectron. Prog. 53 050007 (in Chinese) |
[2] | Xu Y, Peng Z G, Cheng Z C, Shi Y H, Wang B B, and Wang P 2021 Chin. J. Lasers 48 0501003 (in Chinese) |
[3] | Govind P A 2014 Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp 1–14, 59–69, 203–206 (in Chinese) |
[4] | Nizamani B, Salam S, Jafry A A A, Zahir N M, Jurami N, Abdul Khudus M I M, Shuhaimi A, Hanafi E, and Harun S W 2020 Chin. Phys. Lett. 37 054202 |
[5] | Grzegorz S, Karol K, Jan T, and Jaroslaw S 2016 Laser Phys. 26 015106 |
[6] | Tino E, Stean H, Enrico S, Thomas V A, Thomas G, Christian W, Thomas S, Jens L, and Andreas T 2010 Opt. Lett. 35 94 |
[7] | Chang G Q, Rever M, Smirnov V, Glebov L, and Galvanauskas A 2009 Opt. Lett. 34 2952 |
[8] | Li F, Yang Z, Lv Z G, Duan Y F, Wang N N, Yang Y, Li Q L, Yang X J, Wang Y S, and Zhao W 2020 Opt. Laser Technol. 129 106291 |
[9] | Chi J J, Shi H X, Fu C, Wang J L, and Li P X 2019 Optik 183 1133 |
[10] | Sun R Y, Jin D C, Tan F Z, Wei S Y, Hong C, Xu J, Liu J, and Wang P 2016 Opt. Express 24 22806 |
[11] | Saulius F, Andrejus M, Nerijus R, Vadim S, Ruslan V, and Alexei L G 2016 Proc. SPIE 9730 973017 |
[12] | Imeshev G, Hartl I, and Fermann M E 2004 Opt. Lett. 29 679 |
[13] | Muller M, Aleshire C, Klenke A, Haddad E, Legare F, Tunnermann A, and Limpert J 2006 Appl. Opt. 45 3083 |
[14] | Štěpánková D, Muzík J, Novák O, Roškot L, Smirnov V, Glebov L, Jelínek M, Smrz M, Lucianetti A, and Mocek T 2020 Appl. Opt. 59 7938 |
[15] | Yu H L, Wang X L, Zhang H W, Su R T, Zhou P, and Chen J B 2016 J. Lightwave Technol. 34 4271 |
[16] | Matos C J S, Taylor J R, Hansen T P, Hansen K P, and Broeng J 2004 IEEE Conference on Lasers and Electro-Optics (San Francisco, California, USA 16–21 May 2004) CWK2 |
[17] | Limpert J, Schreiber T, Nolte S, Zellmer H, and Tünnermann A 2003 Opt. Express 11 3332 |
[18] | Matos C J S and Taylor J R 2004 Opt. Express 12 405 |
[19] | Galvanauskas A, Harter D, Radic S, and Agrawal G P 1996 IEEE Conference on Lasers and Electro-Optics (Anaheim, Southern California, USA 2–7 June 1996) pp 499–500 |
[20] | Boskovic A, Guy M J, Chernikov S V, Taylor J R, and Kashyap R 1995 Electron. Lett. 31 877 |
[21] | Galvanauskas A, Fermann M E, Harter D, Sugden K, and Bennion I 1995 Appl. Phys. Lett. 66 1053 |
[22] | Taverner D, Richardson D J, Zervas M N, Reekie L, Dong L, and Cruz J L 1995 IEEE Photon. Technol. Lett. 7 1436 |
[23] | Broderick N G R, Richardson D J, Taverner D, Caplen J E, Dong L, and Ibsen M 1999 Opt. Lett. 24 566 |
[24] | Meng W, Zefeng W, Le L, Qihao H, Hu X, and Xiaojun X 2019 Photon. Res. 7 167 |
[25] | Xin T, Xiaofan Z, Meng W, and Zefeng W 2020 Laser Phys. Lett. 17 085104 |
[26] | Kashyap R 2010 Fiber Bragg Gratings (Burlington: Elsevier) pp 132–151, 301–306 |
[27] | Yu J T and He H Y 2009 Study Opt. Commun. 2 14 (in Chinese) |
[28] | Zhang Y S, Yu K, Jiang D S, and Wu X Q 1999 Opt. Technol. 1999(1) 24 (in Chinese) |
[29] | Li X T, Cen Z F, Optics G A, and Design O 2014 Geometrical Optics, Aberrations and Optical Design (Hangzhou: Zhejiang University Press) pp 251–254 (in Chinese) |
[30] | Zhang Y J 2016 PhD Dissertation (Changsha: National University of Defense Technology) pp 38–40 (in Chinese) |
[31] | Song Z Q, Qi H F, Li S J, Guo J, Wang C, and Peng G D 2013 Acta Opt. Sin. 33 0706009 (in Chinese) |
[32] | Hao J J, Tu W, Zong N, Shen Y, Zhang S J, Bo Y, Peng Q J, and Xu Z Y 2020 Chin. Phys. Lett. 37 044202 |
[33] | Sobon G, Pawel R K, Sliwinska D, Sotor J, and Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492 |
[34] | Liao Y B and Li M 2013 Fiber Optics (Beijing: Tsinghua University Press) pp 30–32 (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|