Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 020502    DOI: 10.1088/0256-307X/39/2/020502
GENERAL |
Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering
M.-L. Cai1†, Z.-D. Liu1†, Y. Jiang1†, Y.-K. Wu1, Q.-X. Mei1, W.-D. Zhao1, L. He1, X. Zhang2,1, Z.-C. Zhou1,3, and L.-M. Duan1*
1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
2Department of Physics, Renmin University, Beijing 100084, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
M.-L. Cai, Z.-D. Liu, Y. Jiang et al  2022 Chin. Phys. Lett. 39 020502
Download: PDF(1402KB)   PDF(mobile)(1636KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dissipation is often considered as a detrimental effect in quantum systems for unitary quantum operations. However, it has been shown that suitable dissipation can be useful resources in both quantum information and quantum simulation. Here, we propose and experimentally simulate a dissipative phase transition (DPT) model using a single trapped ion with an engineered reservoir. We show that the ion's spatial oscillation mode reaches a steady state after the alternating application of unitary evolution under a quantum Rabi model Hamiltonian and sideband cooling of the oscillator. The average phonon number of the oscillation mode is used as the order parameter to provide evidence for the DPT. Our work highlights the suitability of trapped ions for simulating open quantum systems and shall facilitate further investigations of DPT with various dissipation terms.
Received: 07 December 2021      Editors' Suggestion Published: 29 January 2022
PACS:  05.30.Rt (Quantum phase transitions)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/020502       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M.-L. Cai
Z.-D. Liu
Y. Jiang
Y.-K. Wu
Q.-X. Mei
W.-D. Zhao
L. He
X. Zhang
Z.-C. Zhou
and L.-M. Duan
[1] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P, and Zoller P 2008 Nat. Phys. 4 878
[2] Kraus B, Büchler H P, Diehl S, Kantian A, Micheli A, and Zoller P 2008 Phys. Rev. A 78 042307
[3] Verstraete F, Wolf M M, and Cirac J I 2009 Nat. Phys. 5 633
[4] Pastawski F, Clemente L, and Cirac J I 2011 Phys. Rev. A 83 012304
[5] Kessler E M, Giedke G, Imamoglu A, Yelin S F, Lukin M D, and Cirac J I 2012 Phys. Rev. A 86 012116
[6] Brennecke F, Mottl R, Baumann K, Landig R, Donner T, and Esslinger T 2013 Proc. Natl. Acad. Sci. USA 110 11763
[7] Klinder J, Keßler H, Wolke M, Mathey L, and Hemmerich A 2015 Proc. Natl. Acad. Sci. USA 112 3290
[8] Rodriguez S R K, Casteels W, Storme F, Zambon N C, Sagnes I, Gratiet L L, Galopin E, Lemaître A, Amo A, Ciuti C et al. 2017 Phys. Rev. Lett. 118 247402
[9] Fink T, Schade A, Höfling S, Schneider C, and Imamoglu A 2018 Nat. Phys. 14 365
[10] Fink J M, Dombi A, Vukics A, Wallraff A, and Domokos P 2017 Phys. Rev. X 7 011012
[11] Fitzpatrick M, Sundaresan N M, Li A C Y, Koch J, and Houck A A 2017 Phys. Rev. X 7 011016
[12] Collodo M C, Potočnik A, Gasparinetti S, Besse J C, Pechal M, Sameti M, Hartmann M J, Wallraff A, and Eichler C 2019 Phys. Rev. Lett. 122 183601
[13] Ballance C J, Harty T P, Linke N M, Sepiol M A, and Lucas D M 2016 Phys. Rev. Lett. 117 060504
[14] Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D et al. 2016 Phys. Rev. Lett. 117 060505
[15] Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281
[16] Lin Y, Gaebler J P, Reiter F, Tan T R, Bowler R, Sørensen A S, Leibfried D, and Wineland D J 2013 Nature 504 415
[17] Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, and Blatt R 2011 Nature 470 486
[18] Schindler P, Müller M, Nigg D, Barreiro J T, Martinez E A, Hennrich M, Monz T, Diehl S, Zoller P, and Blatt R 2013 Nat. Phys. 9 361
[19] Hwang M J, Rabl P, and Plenio M B 2018 Phys. Rev. A 97 013825
[20] Pedernales J S, Lizuain I, Felicetti S, Romero G, Lamata L, and Solano E 2015 Sci. Rep. 5 15472
[21] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E, and Kim K 2018 Phys. Rev. X 8 021027
[22] Casteels W, Fazio R, and Ciuti C 2017 Phys. Rev. A 95 012128
[23] Minganti F, Biella A, Bartolo N, and Ciuti C 2018 Phys. Rev. A 98 042118
[24] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, and Duan L M 2021 Nat. Commun. 12 1126
[25] Langford N K, Sagastizabal R, Kounalakis M, Dickel C, Bruno A, Luthi F, Thoen D J, Endo A, and DiCarlo L 2017 Nat. Commun. 8 1715
[26] Crespi A, Longhi S, and Osellame R 2012 Phys. Rev. Lett. 108 163601
[27] Todorov Y, Andrews A M, Sagnes I, Colombelli R, Klang P, Strasser G, and Sirtori C 2009 Phys. Rev. Lett. 102 186402
[28] Kienzler D, Lo H Y, Keitch B, de Clercq L, Leupold F, Lindenfelser F, Marinelli M, Negnevitsky V, and Home J P 2015 Science 347 53
[29] Jamonneau P, Hétet G, Dréau A, Roch J F, and Jacques V 2016 Phys. Rev. Lett. 116 043603
[30] Nicolas L, Delord T, Jamonneau P, Coto R, Maze J, Jacques V, and Hétet G 2018 New J. Phys. 20 033007
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 020502
[2] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 020502
[3] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 020502
[4] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 020502
Viewed
Full text


Abstract