Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 020501    DOI: 10.1088/0256-307X/39/2/020501
GENERAL |
Dynamics of Two Dark Solitons in a Polariton Condensate
Yiling Zhang, Chunyu Jia, and Zhaoxin Liang*
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Cite this article:   
Yiling Zhang, Chunyu Jia, and Zhaoxin Liang 2022 Chin. Phys. Lett. 39 020501
Download: PDF(806KB)   PDF(mobile)(919KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate dynamics of two dark solitons in a polariton condensate under nonresonant pumping, based on driven dissipative Gross–Pitaevskii equations coupled to the rate equation. The equation of motion of the relative center position of two-dark soliton is obtained analytically by using the Lagrangian approach. In particular, the analytical expression of the effective potential between two dark solitons is given. The resulting equation of motion captures how the open-dissipative character of a polariton Bose–Einstein condensate affects properties of dynamics of two-dark soliton, i.e., two-dark soliton relax by blending with the background at a finite time. We further simulate the relative motion of two dark solitons numerically with the emphasis on how two-soliton motion is manipulated by the initial velocity, in excellent agreement with the analytical results. The prediction of this work is sufficient for the experimental observations within current facilities.
Received: 07 December 2021      Published: 29 January 2022
PACS:  05.45.Yv (Solitons)  
  71.38.-k (Polarons and electron-phonon interactions)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  67.85.Jk (Other Bose-Einstein condensation phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/020501       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiling Zhang
Chunyu Jia
and Zhaoxin Liang
[1] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F, Szymańska M, André R, Staehli J et al. 2006 Nature 443 409
[2] Deng H, Haug H, and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[3] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[4] Keeling J and Berloff N G 2011 Contemp. Phys. 52 131
[5] Bobrovska N, Ostrovskaya E A, and Matuszewski M 2014 Phys. Rev. B 90 205304
[6] Keeling J, Marchetti F M, Szymańska M H, and Littlewood P B 2007 Semicond. Sci. Technol. 22 R1
[7] Lüders C, Pukrop M, Rozas E, Schneider C, Höfling S, Sperling J, Schumacher S, and Aßmann M 2021 PRX Quantum 2 030320
[8] Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A, and Höfling S 2016 Rep. Prog. Phys. 80 016503
[9] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[10] Zhao L C, Qin Y H, Wang W L, and Yang Z Y 2020 Chin. Phys. Lett. 37 050502
[11] Wouters M and Carusotto I 2010 Phys. Rev. Lett. 105 020602
[12] Gargoubi H, Guillet T, Jaziri S, Balti J, and Guizal B 2016 Phys. Rev. E 94 043310
[13] Zhang K, Wen W, Lin J, and Li H J 2021 New J. Phys. 23 033011
[14] Cheng S C and Chen T W 2020 Phys. Rev. B 101 125304
[15] Mu N M A, Rubo Y G, and Toikka L A 2020 Phys. Rev. B 101 184509
[16] Jiang Y, Wang G, Sun X M, Feng S H, and Xue Y 2019 Opt. Express 27 10185
[17] Opala A, Pieczarka M, Bobrovska N, and Matuszewski M 2018 Phys. Rev. B 97 155304
[18] Stepanov P, Amelio I, Rousset J G, Bloch J, Lemaitre A, Amo A, Minguzzi A, Carusotto I, and Richard M 2019 Nat. Commun. 10
[19] Maître A, Lerario G, Medeiros A, Claude F, Glorieux Q, Giacobino E, Pigeon S, and Bramati A 2020 Phys. Rev. X 10 041028
[20] Lerario G, Koniakhin S V, Maître A, Solnyshkov D, Zilio A, Glorieux Q, Malpuech G, Giacobino E, Pigeon S, and Bramati A 2020 Phys. Rev. Res. 2 042041
[21] Claude F, Koniakhin S V, Maitre A, Pigeon S, Lerario G, Stupin D D, Glorieux Q, Giacobino E, Solnyshkov D, Malpuech G, and Bramati A 2020 Optica 7 1660
[22] Yulin A V, Skryabin D V, and Gorbach A V 2015 Phys. Rev. B 92 064306
[23]Pethick C J and Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[24]Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2015 The Defocusing Nonlinear SchrÖDinger Equation: From Dark Solitons to Vortices and Vortex Rings (Philadelphia: SIAM)
[25] Kevrekidis P and Frantzeskakis D 2016 Rev. Phys. 1 140
[26] Xu X, Chen L, Zhang Z, and Liang Z 2019 J. Phys. B 52 025303
[27] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[28] Liang Z X, Zhang Z D, and Liu W M 2005 Phys. Rev. Lett. 94 050402
[29] Bradley C C, Sackett C A, Tollett J J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[30] Takemura N, Trebaol S, Wouters M, Portella-Oberli M T, and Deveaud B 2014 Nat. Phys. 10 500
[31] Takemura N, Anderson M D, Navadeh-Toupchi M, Oberli D Y, Portella-Oberli M T, and Deveaud B 2017 Phys. Rev. B 95 205303
[32] Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502
[33] Grosso G, Nardin G, Morier-Genoud F, Léger Y, and Deveaud-Plédran B 2011 Phys. Rev. Lett. 107 245301
[34] Akhmerov A R 2010 Phys. Rev. B 82 020509
[35] Amo A, Pigeon S, Sanvitto D, Sala V G, Hivet R, Carusotto I, Pisanello F, Lemenager G, Houdre R, Giacobino E, Ciuti C, and Bramati A 2011 Science 332 1167
[36] Li H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 030302
[37] Barland S, Giudici M, Tissoni G, Tredicce J R, Brambilla M, Lugiato L, Prati F, Barbay S, Kuszelewicz R, Ackemann T, Firth W J, and Oppo G L 2012 Nat. Photon. 6 204
[38] Ma X, Egorov O A, and Schumacher S 2017 Phys. Rev. Lett. 118 157401
[39] Pinsker F and Flayac H 2014 Phys. Rev. Lett. 112 140405
[40] Wertz E, Ferrier L, Solnyshkov D D, Johne R, Sanvitto D, Lemaître A, Sagnes I, Grousson R, Kavokin A V, Senellart P, Malpuech G, and Bloch J 2010 Nat. Phys. 6 860
[41] Smirnov L A, Smirnova D A, Ostrovskaya E A, and Kivshar Y S 2014 Phys. Rev. B 89 235310
[42] Kivshar Y S and Królikowski W 1995 Opt. Commun. 114 353
[43] Ankiewicz A, Akhmediev N, and Devine N 2007 Opt. Fiber Technol. 13 91
[44] Theocharis G, Schmelcher P, Oberthaler M K, Kevrekidis P G, and Frantzeskakis D J 2005 Phys. Rev. A 72 023609
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 020501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 020501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 020501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 020501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 020501
[7] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 020501
[8] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[9] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[10] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[11] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 020501
[12] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 020501
[13] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 020501
[14] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 020501
[15] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 020501
Viewed
Full text


Abstract