Chin. Phys. Lett.  2022, Vol. 39 Issue (2): 020301    DOI: 10.1088/0256-307X/39/2/020301
GENERAL |
Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates
Jun-Tao He, Ping-Ping Fang, and Ji Lin*
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Cite this article:   
Jun-Tao He, Ping-Ping Fang, and Ji Lin 2022 Chin. Phys. Lett. 39 020301
Download: PDF(549KB)   PDF(mobile)(649KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, research of solitons in Bose–Einstein condensates has become a popular topic. Here, we mainly study exact analytical solutions of Gross–Pitaevskii equations describing spin-orbit coupled spin-1 Bose–Einstein condensates. To begin with, we show the analytical relation between different types of one-dimensional spin-orbit coupling and Zeeman effect. In addition, we find a transformation that can simplify the three-component Gross–Pitaevskii equations with spin-orbit coupling into the nonlinear Schrödinger equation. The abundant stripe phase and dynamic characteristics of the system are investigated.
Received: 17 December 2021      Published: 29 January 2022
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/2/020301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun-Tao He
Ping-Ping Fang
and Ji Lin
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[2] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J, and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[3] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[4] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, and Salomon C 2002 Science 296 1290
[5] Hoefer M A, Chang J J, Hamner C, and Engels P 2011 Phys. Rev. A 84 041605
[6] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[7] Leblond H and Mihalache D 2009 Phys. Rev. A 79 063835
[8] Jin X W and Lin J 2020 J. Magn. Magn. Mater. 502 166590
[9] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[10] Yin K H, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201
[11] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[12] Dresselhaus G 1955 Phys. Rev. 100 580
[13] Lin Y J, García K J, and Spielman I B 2011 Nature 471 83
[14] Wang C J, Gao C, Jian C M, and Zhai H 2010 Phys. Rev. Lett. 105 160403
[15] Ho T L and Zhang S Z 2011 Phys. Rev. Lett. 107 150403
[16] Achilleos V, Frantzeskakis D J, Kevrekidis P G, and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[17] Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J, and Schmelcher P 2013 Europhys. Lett. 103 20002
[18] Sakaguchi H, Sherman E Y, and Malomed B A 2016 Phys. Rev. E 94 032202
[19] Gautam S and Adhikari S K 2017 Phys. Rev. A 95 013608
[20] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[21] Kartashov Y V, Konotop V V, and Zezyulin D A 2014 Phys. Rev. A 90 063621
[22] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
[23] Li X X, Cheng R J, Ma J L, Zhang A X, and Xue J K 2021 Phys. Rev. E 104 034214
[24] Yang Y X, Gao P, Wu Z, Zhao L C, and Yang Z Y 2021 Ann. Phys. 431 168562
[25] Liu Y K and Yang S J 2014 Europhys. Lett. 108 30004
[26] Gautam S and Adhikari S K 2015 Laser Phys. Lett. 12 045501
[27] Adhikari S K 2021 Phys. Rev. A 103 L011301
[28] Li Y E and Xue J K 2018 Front. Phys. 13 130307
[29] Zhao L C, Luo X W, and Zhang C W 2020 Phys. Rev. A 101 023621
[30] Dalfovo F, Giorgini S, Pitaevskii L P, and Stringari S 1999 Rev. Mod. Phys. 71 463
[31] Ueda M and Kawaguchi Y 2012 Phys. Rep. 520 253
[32] Papoular D J, Shlyapnikov G V, and Dalibard J 2010 Phys. Rev. A 81 041603
[33] Bookjans E M, Vinit A, and Raman C 2011 Phys. Rev. Lett. 107 195306
[34] Zhao D, Song S W, Wen L, Li Z D, Luo H G, and Liu W M 2015 Phys. Rev. A 91 013619
[35] Ueda T and Kath W L 1990 Phys. Rev. A 42 563
[36] Zhao L C, Qin Y H, Wang W L, and Yang Z Y 2020 Chin. Phys. Lett. 37 050502
[37] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[38] Hirota R 1973 J. Math. Phys. 14 805
[39] Akhmediev N, Ankiewicz A, and Taki M 2009 Phys. Lett. A 373 675
[40] Wang L H, Porsezian K, and He J S 2013 Phys. Rev. E 87 053202
[41] Ohta Y and Yang J K 2012 Proc. R. Soc. A 468 1716
[42] Kanna T and Lakshmanan M 2003 Phys. Rev. E 67 046617
Related articles from Frontiers Journals
[1] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 020301
[2] Yuncheng Xiong  and Lan Yin. Self-Bound Quantum Droplet with Internal Stripe Structure in One-Dimensional Spin-Orbit-Coupled Bose Gas[J]. Chin. Phys. Lett., 2021, 38(7): 020301
[3] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 020301
[4] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 020301
[5] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 020301
[6] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 020301
[7] NIU Zhen-Xia, XUE Ju-Kui. Selective Tunneling Dynamics of Bosons with Effective Three-Particle Interactions[J]. Chin. Phys. Lett., 2014, 31(10): 020301
[8] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 020301
[9] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 020301
[10] HAO Ya-Jiang . Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap[J]. Chin. Phys. Lett., 2011, 28(1): 020301
[11] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 020301
[12] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 020301
[13] YAN Jia-Ren, PAN Liu-Xian, YU Hui-You, AO Sheng-Mei. Interactions between Components of Various Vector Solitons in Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2009, 26(9): 020301
[14] XIA Lin, XIONG Wei, YANG Fan, YI Lin, ZHOU Xiao-Ji, CHEN Xu-Zong. High Field Seeking State Atom Laser and Properties of Flux[J]. Chin. Phys. Lett., 2008, 25(7): 020301
[15] PANG Wei, LI Zhi-Bing, BAO Cheng-Guang. Ground Band and Excited Band of Spin-1 BEC in Cigar Shaped Laser Trap[J]. Chin. Phys. Lett., 2007, 24(10): 020301
Viewed
Full text


Abstract