CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions |
Wenkai Zhu1,2†, Shihong Xie1,3†, Hailong Lin1,2†, Gaojie Zhang4,5, Hao Wu4,5, Tiangui Hu1,2, Ziao Wang1,2, Xiaomin Zhang1,2, Jiahan Xu1, Yujing Wang1,2, Yuanhui Zheng1, Faguang Yan1, Jing Zhang1, Lixia Zhao1,6, Amalia Patanè3, Jia Zhang5,7, Haixin Chang4,5*, and Kaiyou Wang1,2* |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom 4Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 5Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China 6School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China 7School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
|
|
Cite this article: |
Wenkai Zhu, Shihong Xie, Hailong Lin et al 2022 Chin. Phys. Lett. 39 128501 |
|
|
Abstract A magnetic tunnel junction (MTJ) is the core component in memory technologies, such as the magnetic random-access memory, magnetic sensors and programmable logic devices. In particular, MTJs based on two-dimensional van der Waals (vdW) heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices. However, their operation at room temperature remains a challenge. Here, we report a large tunnel magnetoresistance (TMR) of up to 85% at room temperature ($T = 300$ K) in vdW MTJs based on a thin ($ < 10$ nm) semiconductor spacer WSe$_{2}$ layer embedded between two Fe$_{3}$GaTe$_{2}$ electrodes with intrinsic above-room-temperature ferromagnetism. The TMR in the MTJ increases with decreasing temperature up to 164% at $T = 10$ K. The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.
|
|
Received: 14 November 2022
Express Letter
Published: 18 November 2022
|
|
PACS: |
85.75.Dd
|
(Magnetic memory using magnetic tunnel junctions)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
61.82.Fk
|
(Semiconductors)
|
|
|
|
|
[1] | Yang H, Valenzuela S O, Chshiev M, Couet S, Dieny B, Dlubak B, Fert A, Garello K, Jamet M, Jeong D E, Lee K, Lee T, Martin M B, Kar G S, Seneor P, Shin H J, and Roche S 2022 Nature 606 663 |
[2] | Moodera J S, Kinder L R, Wong T M, and Meservey R 1995 Phys. Rev. Lett. 74 3273 |
[3] | Wang W G, Li M G, Hageman S, and Chien C L 2012 Nat. Mater. 11 64 |
[4] | Wang W Y, Narayan A, Tang L, Dolui K, Liu Y W, Yuan X, Jin Y B, Wu Y, Rungger I, Sanvito S, and Xiu F X 2015 Nano Lett. 15 5261 |
[5] | Butler W H, Zhang X G, Schulthess T C, and MacLaren J M 2001 Phys. Rev. B 63 054416 |
[6] | Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868 |
[7] | Kalitsov A, Zermatten P J, Bonell F, Gaudin G, Andrieu S, Tiusan C, Chshiev M, and Velev J P 2013 J. Phys.: Condens. Matter 25 496005 |
[8] | Dorneles L S, Sommer R L, and Schelp L F 2002 J. Appl. Phys. 91 7971 |
[9] | Ning J, Zhou Y, Zhang J C, Lu W, Dong J G, Yan C C, Wang D, Shen X, Feng X, Zhou H, and Hao Y 2020 Appl. Phys. Lett. 117 163104 |
[10] | Xie S, Shiffa M, Shiffa M, Kudrynskyi Z R, Makarovskiy O, Kovalyuk Z D, Zhu W, Wang K, and Patanè A 2022 npj 2D Mater. Appl. 6 61 |
[11] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[12] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 |
[13] | Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544 |
[14] | Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, and Xu X D 2018 Nat. Mater. 17 778 |
[15] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94 |
[16] | May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, and McGuire M A 2019 ACS Nano 13 4436 |
[17] | Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072 |
[18] | Ye X G, Zhu P F, Xu W Z, Shang N, Liu K, and Liao Z M 2022 Chin. Phys. Lett. 39 037303 |
[19] | Feng H, Li Y, Shi Y, Xie H Y, Li Y, and Xu Y 2022 Chin. Phys. Lett. 39 077501 |
[20] | Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, and Xiu F 2017 npj 2D Mater. Appl. 1 30 |
[21] | Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il M B, Yang B J, and Kim J S 2018 Nat. Mater. 17 794 |
[22] | Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, and Wang L 2019 Sci. Adv. 5 eaaw0409 |
[23] | Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, and Shi J 2019 Nano Lett. 19 4400 |
[24] | Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, and Wang W 2020 Nano Lett. 20 868 |
[25] | Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K, and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921 |
[26] | Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658 |
[27] | Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, and Wang K 2022 npj 2D Mater. Appl. 6 62 |
[28] | Lin H, Yan F, Hu C, Zheng Y, Sheng Y, Zhu W, Wang Z, Zheng H, and Wang K 2022 Nanoscale 14 2352 |
[29] | Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, and Singh S 2022 Nat. Mater. 21 1029 |
[30] | Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater. 21 1144 |
[31] | Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303 |
[32] | Li Z, Tang M, Huang J, Qin F, Ao L, Shen Z, Zhang C, Chen P, Bi X, Qiu C, Yu Z, Zhai K, Ideue T, Wang L, Liu Z, Tian Y, Iwasa Y, and Yuan H 2022 Adv. Mater. 34 2201209 |
[33] | Cao Y, Zhang X, Zhang X P, Yan F, Wang Z, Zhu W, Tan H, Golovach V N, Zheng H, and Wang K 2022 Phys. Rev. Appl. 17 L051001 |
[34] | Zhou H Y, Zhang Y G, and Zhao W S 2021 ACS Appl. Mater. Interfaces 13 1214 |
[35] | Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W, and Chang H 2022 Nat. Commun. 13 5067 |
[36] | Gong K, Zhang L, Liu D P, Liu L, Zhu Y, Zhao Y H, and Guo H 2014 Nanotechnology 25 435201 |
[37] | Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186 |
[38] | Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, and Rack P D 2018 Nano Res. 11 722 |
[39] | Bowen M, Cros V, Petroff F, Fert A, Martı B C, Costa-Krämer J L, Anguita J V, Cebollada A, Briones F, de Teresa J M, Morellón L, Ibarra M R, Güell F, Peiró F, and Cornet A 2001 Appl. Phys. Lett. 79 1655 |
[40] | Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, and Tan P H 2016 2D Mater. 3 025016 |
[41] | Miyazaki T and Tezuka N 1995 J. Magn. Magn. Mater. 139 L231 |
[42] | Tiusan C, Faure-Vincent J, Bellouard C, Hehn M, Jouguelet E, and Schuhl A 2004 Phys. Rev. Lett. 93 106602 |
[43] | Hu C, Yan F, Li Y, and Wang K 2021 Chin. Phys. B 30 097505 |
[44] | Dho J, Lee E K, Park J Y, and Hur N H 2005 J. Magn. Magn. Mater. 285 164 |
[45] | Žutić I, Fabian J, and Das S S 2004 Rev. Mod. Phys. 76 323 |
[46] | Wang X, Li D, Li Z, Wu C, Che C M, Chen G, and Cui X 2021 ACS Nano 15 16236 |
[47] | Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K, and Parkin S S P 2021 Science 374 616 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|