CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes |
Jingrui Ma1,2, Haodong Tang1,2, Xiangwei Qu1,2, Guohong Xiang1,2, Siqi Jia1,2, Pai Liu1,2, Kai Wang1,2,3, and Xiao Wei Sun1,2,3* |
1Key Laboratory of Energy Conversion and Storage Technologies (SUSTech) of Ministry of Education, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, SUSTech-Huawei Joint Lab for Photonics Industry, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China 3Shenzhen Planck Innovation Technologies Co. Ltd., Shenzhen 518173, China
|
|
Cite this article: |
Jingrui Ma, Haodong Tang, Xiangwei Qu et al 2022 Chin. Phys. Lett. 39 128401 |
|
|
Abstract We present $dC/dV$ analysis based on the capacitance-voltage ($C$–$V$) measurement of quantum-dot light-emitting diodes (QLEDs), and find that some key device operating parameters (electrical and optical turn-on voltage, peak capacitance, maximum efficiency) can be directly related to the turning points and maximum/minimum of the $dC/dV$ (versus voltage) curve. By the $dC/dV$ study, the behaviors such as low turn-on voltage, simultaneous electrical and optical turn-on process, and carrier accumulation during the device aging can be well explained. Moreover, we perform the $C$–$V$ and $dC/dV$ measurement of aged devices, and confirm that our $dC/dV$ analysis is correct for them. Thus, our $dC/dV$ analysis method can be applied universally for QLED devices. It provides an in-depth understanding of carrier dynamics in QLEDs through simple $C$–$V$ measurement.
|
|
Received: 21 September 2022
Published: 02 December 2022
|
|
PACS: |
84.37.+q
|
(Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
|
|
|
[1] | Coe S, Woo W K, Bawendi M G, and Bulović V 2002 Nature 420 800 |
[2] | Kagan C R, Lifshitz E, Sargent E H, and Talapin D V 2016 Science 353 aac5523 |
[3] | Shirasaki Y, Supran G J, Bawendi M G, and Bulović V 2013 Nat. Photon. 7 13 |
[4] | de Arquer F P G, Talapin D V, Klimov V I, Arakawa Y, Bayer M, and Sargent E H 2021 Science 373 eaaz8541 |
[5] | Song J J, Wang O Y, Shen H B, Lin Q L, Li Z H, Wang L, Zhang X T, and Li L S 2019 Adv. Funct. Mater. 29 1808377 |
[6] | Deng Y Z, Peng F, Lu Y, Zhu X T, Jin W X, Qiu J, Dong J W, Hao Y L, Di D W, Gao Y, Sun T, Zhang M, Liu F, Wang L, Ying L, Huang F, and Jin Y 2022 Nat. Photon. 16 505 |
[7] | Liu D Q, Cao S, Wang S Y, Wang H Q, Dai W, Zou B S, Zhao J L, and Wang Y J 2020 J. Phys. Chem. Lett. 11 3111 |
[8] | Wu L, Liu W, Lu Z, Yan Y, Zhang J, Xu W, Yang Y, and Yan X 2020 SID Symp. Dig. Tech. Papers 51 1071 |
[9] | Yang J, Choi M K, Yang U J, Kim S Y, Kim Y S, Kim J H, Kim D H, and Hyeon T 2021 Nano Lett. 21 26 |
[10] | Davidson-Hall T and Aziz H 2020 Appl. Phys. Lett. 116 010502 |
[11] | Jia S Q, Tang H D, Ma J R, Ding S H, Qu X W, Xu B, Wu Z H, Li G Y, Liu P, Wang K, and Sun X W 2021 Adv. Opt. Mater. 9 2101069 |
[12] | Zhao J, Chen L, Li D, Shi Z, Liu P, Yao Z, Yang H, Zou T, Zhao B, Zhang X, Zhou H, Yang Y, Cao W, Yan X, Zhang S, and Sun X W 2021 Nat. Commun. 12 4603 |
[13] | Hahm D, Lim J, Kim H, Shin J W, Hwang S, Rhee S, Chang J H, Yang J, Lim C H, Jo H, Choi B, Cho N S, Park Y S, Lee D C, Hwang E, Chung S, Kang C M, Kang M S, and Bae W K 2022 Nat. Nanotechnol. 17 952 |
[14] | Fan J and Qian L 2022 Nat. Nanotechnol. 17 906 |
[15] | Jin W, Deng Y, Guo B, Lian Y, Zhao B, Di D, Sun X W, Wang K, Chen S, Yang Y, Cao W, Chen S, Ji W, Yang X, Gao Y, Wang S, Shen H, Zhao J, Qian L, Li F, and Jin Y 2022 npj Flex. Electron. 6 35 |
[16] | Anaya M, Rand B P, Holmes R J, Credgington D, Bolink H J, Friend R H, Wang J, Greenham N C, and Stranks S D 2019 Nat. Photon. 13 818 |
[17] | Chen S, Cao W, Liu T, Tsang S W, Yang Y, Yan X, and Qian L 2019 Nat. Commun. 10 765 |
[18] | Chen Z, Su Q, Qin Z, and Chen S 2021 Nano Res. 14 320 |
[19] | Chen D, Chen D, Dai X, Zhang Z, Lin J, Deng Y, Hao Y, Zhang C, Zhu H, Gao F, and Jin Y 2020 Adv. Mater. 32 2006178 |
[20] | Chen M, Chen X, Ma W, Sun X, Wu L, Lin X, Yang Y, Li R, Shen D, Chen Y, and Chen S 2022 ACS Nano 16 9631 |
[21] | Mandoc M M, de Boer B, Paasch G, and Blom P W M 2007 Phys. Rev. B 75 193202 |
[22] | Lan X, Chen M, Hudson M H, Kamysbayev V, Wang Y, Guyot-Sionnest P, and Talapin D V 2020 Nat. Mater. 19 323 |
[23] | Guyot-Sionnest P 2012 J. Phys. Chem. Lett. 3 1169 |
[24] | Meulenkamp E A 1999 J. Phys. Chem. B 103 7831 |
[25] | Cao W, Xiang C, Yang Y, Chen Q, Chen L, Yan X, and Qian L 2018 Nat. Commun. 9 2608 |
[26] | Wu Z, Liu P, Qu X, Ma J, Liu W, Xu B, Wang K, and Sun X W 2021 Adv. Opt. Mater. 9 2100389 |
[27] | Xiao X, Ye T, Sun J, Qu X, Ren Z, Wu D, Ding S, Sun X W, Choy W C H, and Wang K 2022 Appl. Phys. Lett. 120 243501 |
[28] | Zhang X W, Xu J W, Xu H R, Wang H, Xie C L, Wei B, Jiang X Y, and Zhang Z L 2013 J. Phys. D 46 055102 |
[29] | Kim D, Kwon O, Kim M, and Lee H 2022 Org. Electron. 108 106593 |
[30] | Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P, and Peng X G 2014 Nature 515 96 |
[31] | Zhang Z X, Ye Y X, Pu C D, Deng Y Z, Dai X L, Chen X P, Chen D, Zheng X R, Gao Y, Fang W, Peng X G, and Jin Y Z 2018 Adv. Mater. 30 1801387 |
[32] | Deng Y, Lin X, Fang W, Di D, Wang L, Friend R H, Peng X, and Jin Y 2020 Nat. Commun. 11 2309 |
[33] | Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, and Peng X 2020 Nat. Commun. 11 937 |
[34] | Jung S M, Lee T H, Bang S Y, Han S D, Shin D W, Lee S, Choi H W, Suh Y H, Fan X B, Jo J W, Zhan S, Yang J, Samarakoon C, Kim Y, Occhipinti L G, Amaratunga G, and Kim J M 2021 npj Comput. Mater. 7 122 |
[35] | Ambrózy A 1970 Solid-State Electron. 13 347 |
[36] | Chim W K, Wong K M, Yeow Y T, Hong Y D, Lei Y, Teo L W, and Choi W K 2003 IEEE Electron Device Lett. 24 667 |
[37] | Shrotriya V and Yang Y 2005 J. Appl. Phys. 97 054504 |
[38] | Campbell I H, Smith D L, and Ferraris J P 1995 Appl. Phys. Lett. 66 3030 |
[39] | You C, Titov A, Kim B H, and Orazem M E 2020 J. Solid State Electrochem. 24 3083 |
[40] | Brütting W, Berleb S, and Mückl A G 2001 Org. Electron. 2 1 |
[41] | Guo Q G, Dai Y F, Sun Q, Qiao X F, Chen J S, Zhu T F, and Ma D G 2018 Adv. Electron. Mater. 4 1800177 |
[42] | Feng L F, Wang J, Zhu C Y, Cong H X, Chen Y, and Wang C D 2005 Optoelectron. Lett. 1 124 |
[43] | Lian Y, Lan D, Xing S, Guo B, Ren Z, Lai R, Zou C, Zhao B, Friend R H, and Di D 2022 Nat. Commun. 13 3845 |
[44] | Rhee S, Chang J H, Hahm D, Kim K, Jeong B G, Lee H J, Lim J, Char K, Lee C, and Bae W K 2019 ACS Appl. Mater. Interfaces 11 40252 |
[45] | Su Q, Sun Y Z, Zhang H, and Chen S M 2018 Adv. Sci. 5 1800549 |
[46] | Luo H X, Zhang W J, Li M L, Yang Y X, Guo M X, Tsang S W, and Chen S 2019 ACS Nano 13 8229 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|