CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs |
Yayuan Qin1, Yao Shen1*, Yiqing Hao1, Hongliang Wo1,2, Shoudong Shen1, Russell A. Ewings3, Yang Zhao4,5, Leland W. Harriger4, Jeffrey W. Lynn4, and Jun Zhao1,2,6,7* |
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 2Shanghai Qizhi Institute, Shanghai 200232, China 3ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, OX11 0QX, United Kingdom 4NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 5Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA 6Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China 7Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Yayuan Qin, Yao Shen, Yiqing Hao et al 2022 Chin. Phys. Lett. 39 127501 |
|
|
Abstract The discovery of pressure-induced superconductivity in helimagnets (CrAs, MnP) has attracted considerable interest in understanding the relationship between complex magnetism and unconventional superconductivity. However, the nature of the magnetism and magnetic interactions that drive the unusual double-helical magnetic order in these materials remains unclear. Here, we report neutron scattering measurements of magnetic excitations in CrAs single crystals at ambient pressure. Our experiments reveal well defined spin wave excitations up to about 150 meV with a pseudogap below 7 meV, which can be effectively described by the Heisenberg model with nearest neighbor exchange interactions. Most surprisingly, the spin excitations are largely quenched above the Néel temperature, in contrast to cuprates and iron pnictides where the spectral weight is mostly preserved in the paramagnetic state. Our results suggest that the helimagnetic order is driven by strongly frustrated exchange interactions, and that CrAs is at the verge of itinerant and correlation-induced localized states, which is therefore highly pressure-tunable and favorable for superconductivity.
|
|
Received: 23 September 2022
Editors' Suggestion
Published: 22 November 2022
|
|
PACS: |
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.30.Ds
|
(Spin waves)
|
|
25.40.Fq
|
(Inelastic neutron scattering)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
|
|
|
[1] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 |
[2] | Dai P 2015 Rev. Mod. Phys. 87 855 |
[3] | Wu W, Cheng J, Matsubayashi K, Kong P, Lin F, Jin C, Wang N, Uwatoko Y, and Luo J 2014 Nat. Commun. 5 5508 |
[4] | Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001 |
[5] | Kotegawa H, Nakahara S, Tou H, and Sugawara H 2014 J. Phys. Soc. Jpn. 83 093702 |
[6] | Norman M R 2015 Physics 8 24 |
[7] | Cheng J G and Luo J L 2017 J. Phys.: Condens. Matter 29 383003 |
[8] | Chen R Y and Wang N L 2019 Rep. Prog. Phys. 82 012503 |
[9] | Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, and Harima H 2015 Phys. Rev. Lett. 114 117002 |
[10] | Fert A, Cros V, and Sampaio J 2013 Nat. Nanotechnol. 8 152 |
[11] | Kallel A, Boller H, and Bertaut E F 1974 J. Phys. Chem. Solids 35 1139 |
[12] | Fawcett E 1988 Rev. Mod. Phys. 60 209 |
[13] | Matsuda M, Lin F K, Yu R, Cheng J G, Wu W, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q, Luo J L, and Uwatoko Y 2018 Phys. Rev. X 8 031017 |
[14] | Wu W, Zhang X, Yin Z, Zheng P, Wang N, and Luo J 2010 Sci. Chin. Phys. Mech. Astron. 53 1207 |
[15] | Lynn J W, Chen Y, Chang S, Zhao Y, Chi S, Ratcliff II W, Ueland B G, and Erwin R W 2012 J. Res. Natl. Inst. Stand. Technol. 117 61 |
[16] | Ewings R A, Stewart J R, Perring T G, Bewley R I, Le M D, Raspino D, Pooley D E, Škoro G, Waller S P, Zacek D, Smith C A, and Riehl-Shaw R C 2019 Rev. Sci. Instrum. 90 035110 |
[17] | Ewings R A, Buts A, Le M D, van Duijn J, Bustinduy I, and Perring T G 2016 Nucl. Instrum. Methods Phys. Res. A 834 132 |
[18] | Watanabe H, Kazama N, Yamaguchi Y, and Ohashi M 1969 J. Appl. Phys. 40 1128 |
[19] | Selte K, Kjekshus A, Jamison W E, Andresen A F, and Engebretsen J E 1971 Acta Chem. Scand. 25 1703 |
[20] | Kazama N and Watanabe H 1971 J. Phys. Soc. Jpn. 31 943 |
[21] | Boller H and Kallel A 1971 Solid State Commun. 9 1699 |
[22] | Shen Y, Wang Q, Hao Y, Pan B, Feng Y, Huang Q, Harriger L W, Leao J B, Zhao Y, Chisnell R M, Lynn J W, Cao H, Hu J, and Zhao J 2016 Phys. Rev. B 93 060503 |
[23] | Keller L, White J S, Frontzek M, Babkevich P, Susner M A, Sims Z C, Sefat A S, Rønnow H M, and Rüegg C 2015 Phys. Rev. B 91 020409 |
[24] | Pan B Y, Xu H C, Liu Y, Sutarto R, He F, Shen Y, Hao Y Q, Zhao J, Harriger L, and Feng D L 2020 Phys. Rev. B 102 104432 |
[25] | Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002 |
[26] | Khomskii D I 2014 Transition Metal Compounds (Cambridge: Cambridge University Press) |
[27] | Cuono G, Romano A, Noce C, and Autieri C 2022 Acta Phys. Pol. A 141 35 |
[28] | Keffer F 1962 Phys. Rev. 126 896 |
[29] | Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, and Dai P 2011 Phys. Rev. B 84 054544 |
[30] | Zhao J, Shen Y, Birgeneau R J, Gao M, Lu Z Y, Lee D H, Lu X Z, Xiang H J, Abernathy D L, and Zhao Y 2014 Phys. Rev. Lett. 112 177002 |
[31] | Sapkota A, Sterling T C, Lozano P M, Li Y, Cao H, Garlea V O, Reznik D, Li Q, Zaliznyak I A, Gu G D, and Tranquada J M 2021 Phys. Rev. B 104 014304 |
[32] | Autieri C and Noce C 2017 Philos. Mag. 97 3276 |
[33] | Autieri C, Cuono G, Forte F, and Noce C 2018 J. Phys.: Conf. Ser. 969 012106 |
[34] | Yu R and Si Q 2011 Phys. Rev. B 84 235115 |
[35] | de' M L, Giovannetti G, and Capone M 2014 Phys. Rev. Lett. 112 177001 |
[36] | Ito T, Ido H, and Motizuki K 2007 J. Magn. Magn. Mater. 310 e558 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|