Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 127402    DOI: 10.1088/0256-307X/39/12/127402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe
Dong Li1†*, Yue Liu1,2†, Zouyouwei Lu1,2†, Peiling Li1, Yuhang Zhang1,2, Sheng Ma1,2, Jiali Liu1,2, Jihu Lu1,2, Hua Zhang1,2,3, Guangtong Liu1,2,3, Fang Zhou1,2,3, Xiaoli Dong1,2,3,4*, and Zhongxian Zhao1,2,3,4
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Dong Li, Yue Liu, Zouyouwei Lu et al  2022 Chin. Phys. Lett. 39 127402
Download: PDF(5277KB)   PDF(mobile)(5284KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The intercalated iron selenide (Li,Fe)OHFeSe has a strongly layered structure analogous to the quasi-two-dimensional (2D) bismuth cuprate superconductors, and exhibits both high-temperature ($T_{\rm c}$) and topological superconductivity. However, the issue of its superconductivity dimensionality has not yet been fully investigated so far. Here we report that the quasi-2D superconductivity features, including the high anisotropy $\gamma = 151$ and the associated quasi-2D vortices, are also revealed for (Li,Fe)OHFeSe, based on systematic experiments of the electrical transport and magnetization and model fittings. Thus, we establish a new vortex phase diagram for (Li,Fe)OHFeSe, which delineates an emergent quasi-2D vortex-liquid state, and a subsequent vortex-solid dimensional crossover from a pancake-like to a three-dimensional state with decreasing temperature and magnetic field. Furthermore, we find that all the quasi-2D characteristics revealed here for the high-$T_{\rm c}$ iron selenide superconductor are very similar to those reported for high-$T_{\rm c}$ bismuth cuprate superconductors.
Received: 02 November 2022      Express Letter Published: 25 November 2022
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.F- (Transport properties)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/127402       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/127402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong Li
Yue Liu
Zouyouwei Lu
Peiling Li
Yuhang Zhang
Sheng Ma
Jiali Liu
Jihu Lu
Hua Zhang
Guangtong Liu
Fang Zhou
Xiaoli Dong
and Zhongxian Zhao
[1] Emery V J and Kivelson S A 1995 Nature 374 434
[2] Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, and Chen X H 2020 Phys. Rev. Lett. 125 097003
[3] Kang B L, Shi M Z, Zhao D, Li S J, Li J, Zheng L X, Song D W, Nie L P, Wu T, and Chen X H 2022 Chin. Phys. Lett. 39 127401
[4] Li M, Wang Z, Zhao D, Liu Y, Jiang C, Wu T, Tao Q, Cao G H, and Xu Z A 2022 Phys. Rev. B 105 104512
[5] Hao J, Hong W, Zhou X, Xiang Y, Dai Y, Yang H, Li S, Luo H, and Wen H H 2022 Phys. Rev. B 106 014523
[6] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[7] Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, and Ma X C 2014 Chin. Phys. Lett. 31 017401
[8] Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, and Wang Y 2015 Sci. Bull. 60 1301
[9] Kozuka Y, Kim M, Bell C, Kim B G, Hikita Y, and Hwang H Y 2009 Nature 462 487
[10] Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, and Jiang M 2014 Nat. Commun. 5 5708
[11] Saito Y, Kasahara Y, Ye J T, Iwasa Y, and Nojima T 2015 Science 350 409
[12] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, and Liu Z 2018 Nature 556 355
[13] Faeth B D, Yang S L, Kawasaki J K, Nelson J N, Mishra P, Parzyck C T, Li C, Schlom D G, and Shen K M 2021 Phys. Rev. X 11 021054
[14] Xu Y, Rong H, Wang Q, Wu D, Hu Y, Cai Y, Gao Q, Yan H, Li C, Yin C, Chen H, Huang J, Zhu Z, Huang Y, Liu G, Xu Z, Zhao L, and Zhou X J 2021 Nat. Commun. 12 2840
[15] Xing Y, Zhang H M, Fu H L, Liu H W, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J, and Xie X C 2015 Science 350 542
[16] Saito Y, Nojima T, and Iwasa Y 2017 Nat. Rev. Mater. 2 16094
[17] Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang J, and Li Y R 2019 Science 366 1505
[18] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, and Liu G 2019 Nat. Commun. 10 2044
[19] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, and Zhang Y 2019 Nature 575 156
[20] Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, and Xie Y W 2021 Science 372 721
[21] Nakagawa Y, Kasahara Y, Nomoto T, Arita R, Nojima T, and Iwasa Y 2021 Science 372 190
[22] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[23] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, H P W C, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, and Feng D L 2018 Phys. Rev. X 8 041056
[24] Chen C, Liu Q, Bao W C, Yan Y, Wang Q H, Zhang T, and Feng D 2020 Phys. Rev. Lett. 124 097001
[25] Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L, and Zhou X J 2020 Phys. Rev. B 101 224508
[26] Lee S L, Zimmermann P, Keller H, Warden M, Savic I M, Schauwecker R, Zech D, Cubitt R, Forgan E M, Kes P H, Li T W, Menovsky A A, and Tarnawski Z 1993 Phys. Rev. Lett. 71 3862
[27] Bernhard C, Wenger C, Niedermayer C, Pooke D M, Tallon J L, Kotaka Y, Shimoyama J, Kishio K, Noakes D R, Stronach C E, Sembiring T, and Ansaldo E J 1995 Phys. Rev. B 52 R7050
[28] Glazman L I and Koshelev A E 1991 Phys. Rev. B 43 2835
[29] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[30] Clem J R 1991 Phys. Rev. B 43 7837
[31] Kleiner R, Steinmeyer F, Kunkel G, and Muller P 1992 Phys. Rev. Lett. 68 2394
[32] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, and Chen X H 2015 Nat. Mater. 14 325
[33] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, and Zhao Z 2015 Phys. Rev. B 92 064515
[34] Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, and Feng D L 2015 Phys. Rev. B 92 060504
[35] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, and Zhou X J 2016 Nat. Commun. 7 10608
[36] Dong X L, Jin K, Yuan J, Zhou F, Zhang G M, and Zhao Z X 2018 Acta Phys. Sin. 67 207410 (in Chinese)
[37] Dong X L, Zhou F, and Zhao Z 2020 Front. Phys. 8 586182
[38] Huang Y, Feng Z Y, J, Hu W L, J, Ni S, Liu S, Mao Y, Zhou H W, H, Zhou F Z, G, Jin K, Dong X, and Zhao Z 2017 arXiv:1711.02920 [cond-mat.supr-con]
[39] Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, and Zhao Z 2017 Chin. Phys. Lett. 34 077404
[40] Li D, Shen P, Ma S, Wei Z, Yuan J, jin K, Yu L, Zhou F, Dong X, and Zhao Z 2021 Chin. Phys. B 30 017402
[41] Li D, Shen P, Tian J, He G, Ni S, Wang Z, Xi C, Pi L, Zhang H, Yuan J, Jin K, Talantsev E F, Yu L, Zhou F, Hänisch J, Dong X, and Zhao Z 2022 Supercond. Sci. Technol. 35 064007
[42] Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O, and Vasiliev A 2013 CrystEngComm 15 1989
[43] Yeshurun Y, Malozemoff A P, and Shaulov A 1996 Rev. Mod. Phys. 68 911
[44] Chen W, Zeng C, Kaxiras E, and Zhang Z 2016 Phys. Rev. B 93 064517
[45] Naughton M J, Yu R C, Davies P K, Fischer J E, Chamberlin R V, Wang Z Z, Jing T W, Ong N P, and Chaikin P M 1988 Phys. Rev. B 38 9280
[46]Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw Hill) p 139
[47] Vedeneev S I, Piot B A, Maude D K, and Sadakov A V 2013 Phys. Rev. B 87 134512
[48] Hänisch J, Huang Y, Li D, Yuan J, Jin K, Dong X, Talantsev E, Holzapfel B, and Zhao Z 2020 Supercond. Sci. Technol. 33 114009
[49] Martinez J C, Brongersma S H, Koshelev A, Ivlev B, Kes P H, Griessen R P, de Groot D G, Tarnavski Z, and Menovsky A A 1992 Phys. Rev. Lett. 69 2276
[50] Palstra T T M, Batlogg B, Schneemeyer L F, and Waszczak J V 1988 Phys. Rev. Lett. 61 1662
[51] Martin S, Fiory A T, Fleming R M, Espinosa G P, and Cooper A S 1989 Phys. Rev. Lett. 62 677
[52]Berezinskii V L 1972 Sov. Phys. JETP 34 610
[53] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[54] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, and Mannhart J 2007 Science 317 1196
[55] Halperin B I and Nelson D R 1979 J. Low Temp. Phys. 36 599
[56] Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403
[57] Zhang T Z, Bao W C, Chen C, Li D, Lu Z, Hu Y, Yang W T, Zhao D M, Yan Y J, Dong X L, Wang Q H, Zhang T, and Feng D L 2021 Phys. Rev. Lett. 126 127001
[58] Martin S, Fiory A T, Fleming R M, Schneemeyer L F, and Waszczak J V 1988 Phys. Rev. Lett. 60 2194
[59] Sun Y, Pyon S, Tamegai T, Kobayashi R, Watashige T, Kasahara S, Matsuda Y, and Shibauchi T 2015 Phys. Rev. B 92 144509
[60] Sun Y, Pyon S, Yang R, Qiu X, Feng J, Shi Z, and Tamegai T 2019 J. Phys. Soc. Jpn. 88 034703
[61] Bean C P 1964 Rev. Mod. Phys. 36 31
[62] Li D, Yuan J, Shen P, Xi C, Tian J, Ni S, Zhang J, Wei Z, Hu W, Li Z, Yu L, Miao J, Zhou F, Pi L, Jin K, Dong X, and Zhao Z 2019 Supercond. Sci. Technol. 32 12LT01
[63] Cheng W, Lin H, Shen B, and Wen H H 2019 Sci. Bull. 64 81
[64] Kakeya I and Wang H 2016 Supercond. Sci. Technol. 29 073001
[65] Moll P J W, Zhu X, Cheng P, Wen H H, and Batlogg B 2014 Nat. Phys. 10 644
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 127402
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 127402
[3] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 127402
[4] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 127402
[5] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 127402
[6] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127402
[7] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 127402
[8] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 127402
[9] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 127402
[10] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 127402
[11] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 127402
[12] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 127402
[13] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 127402
[14] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 127402
[15] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 127402
Viewed
Full text


Abstract