Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 127401    DOI: 10.1088/0256-307X/39/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors
B. L. Kang1†, M. Z. Shi1†, D. Zhao1, S. J. Li1, J. Li1, L. X. Zheng1, D. W. Song1, L. P. Nie1, T. Wu1,2,3,4,5*, and X. H. Chen1,2,3,4,5*
1Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
2Key Laboratory of Strongly coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
3CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
5Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
B. L. Kang, M. Z. Shi, D. Zhao et al  2022 Chin. Phys. Lett. 39 127401
Download: PDF(5078KB)   PDF(mobile)(5253KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, by intercalating organic ions into bulk FeSe superconductors, two kinds of layered FeSe-based superconductors [(TBA)$_{x}$FeSe and (CTA)$_{x}$FeSe] with superconducting transition temperatures ($T_{\rm c}$) above 40 K have been discovered. Due to the large interlayer distance ($\sim $15 Å), these new layered superconductors have a large resistivity anisotropy analogous to bismuth-based cuprate superconductors. Moreover, remarkable pseudogap behavior well above $T_{\rm c}$ is revealed by nuclear magnetic resonance (NMR) measurements on $^{77}$Se nuclei, suggesting a preformed pairing scenario similar to that of cuprates. Here, we report another new kind of organic-ion-intercalated FeSe superconductor, (PY)$_{x}$FeSe, with a reduced interlayer distance ($\sim $10 Å) compared to (TBA)$_{x}$FeSe and (CTA)$_{x}$FeSe. By performing $^{77}$Se NMR and transport measurements, we observe a similar pseudogap behavior well above $T_{\rm c}$ of $\sim $40 K and a large resistivity anisotropy of $\sim$$10^{\boldsymbol{4}}$ in (PY)$_{x}$FeSe. All these facts strongly support a universal pseudogap behavior in these layered FeSe-based superconductors with quasi-two-dimensional electronic structures.
Received: 20 September 2022      Express Letter Published: 10 November 2022
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.nj (Nuclear magnetic resonance)  
  74.25.F- (Transport properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/127401       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/127401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
B. L. Kang
M. Z. Shi
D. Zhao
S. J. Li
J. Li
L. X. Zheng
D. W. Song
L. P. Nie
T. Wu
and X. H. Chen
[1] Emery V J and Kivelson S A 1995 Nature 374 434
[2] Corson J, Mallozzi R, Orenstein J, Eckstein J N, and Bozovic I 1999 Nature 398 221
[3] Uemura Y J et al. 1989 Phys. Rev. Lett. 62 2317
[4] Wang Y Y, Li L, and Ong N P 2006 Phys. Rev. B 73 024510
[5] Tallon J L, Storey J G, and Loram J W 2011 Phys. Rev. B 83 092502
[6] Li L, Wang Y Y, Komiya S, Ono S, Ando Y, Gu G D, and Ong N P 2010 Phys. Rev. B 81 054510
[7] He Y, Chen S D, Li Z X, Zhao D, Song D, Yoshida Y, Eisaki H, Wu T, Chen X H, Lu D H, Meingast C, Devereaux T P, Birgeneau R J, Hashimoto M, Lee D H, and Shen Z X 2021 Phys. Rev. X 11 031068
[8] Kasahara S, Yamashita T, Shi A, Kobayashi R, Shimoyama Y, Watashige T, Ishida K, Terashima T, Wolf T, Hardy F, Meingast C, Von Lohneysen H, Levchenko A, Shibauchi T, and Matsuda Y 2016 Nat. Commun. 7 12843
[9] Hanaguri T, Kasahara S, Boker J, Eremin I, Shibauchi T, and Matsuda Y 2019 Phys. Rev. Lett. 122 077001
[10] Takahashi H, Nabeshima F, Ogawa R, Ohmichi E, Ohta H, and Maeda A 2019 Phys. Rev. B 99 060503
[11] Xu B, Munzar D, Dubroka A, Sheveleva E, Lyzwa F, Marsik P, Wang C N, Wang Z C, Cao G H, and Bernhard C 2020 Phys. Rev. B 101 214512
[12] Hao J H, Hong W S, Zhou X X, Xiang Y, Dai Y M, Yang H, Li S L, Luo H Q, and Wen H H 2021 arXiv:2111.04422 [cond-mat.supr-con]
[13] Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu Y Z, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S L, Liu H Y, Duan Y X, Luo H Q, and Meng J Q 2021 arXiv:2109.06460 [cond-mat.supr-con]
[14] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[15] He S L et al. 2013 Nat. Mater. 12 605
[16] Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, and Feng D L 2013 Nat. Mater. 12 634
[17] Zhang W H et al. 2014 Chin. Phys. Lett. 31 017401
[18] Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, and Xue Q K 2014 Phys. Rev. B 89 060506
[19] Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, and Chen X H 2020 Phys. Rev. Lett. 125 097003
[20] Ono S and Ando Y 2003 Phys. Rev. B 67 104512
[21] Chen X H, Yu M, Ruan K Q, Li S Y, Gui Z, Zhang G C, and Cao L Z 1998 Phys. Rev. B 58 14219
[22] Xu Y, Rong H T, Wang Q Y, Wu D S, Hu Y, Cai Y Q, Gao Q, Yan H T, Li C, Yin C H, Chen H, Huang J W, Zhu Z H, Huang Y, Liu G D, Xu Z Y, Zhao L, and Zhou X J 2021 Nat. Commun. 12 2840
[23] Faeth B D et al. 2021 Phys. Rev. X 11 021054
[24] Wang Z C, He C Y, Tang Z T, Wu S Q, and Cao G H 2017 Sci. Chin. Mater. 60 83
[25] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, and Chen X H 2015 Nat. Mater. 14 325
[26] Miyata Y, Nakayama K, Sugawara K, Sato T, and Takahashi T 2015 Nat. Mater. 14 775
[27] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, and Chen X H 2016 Phys. Rev. Lett. 116 077002
[28] Berthier C, Julien M H, Horvatic M, and Berthier Y 1996 J. Phys. I (France) 6 2205
[29] Korringa J 1950 Phys. (Amsterdam) 16 601
[30] Alloul H, Ohno T, and Mendels P 1989 Phys. Rev. Lett. 63 1700
[31] Ishida K, Yoshida K, Mito T, Tokunaga Y, Kitaoka Y, Asayama K, Nakayama Y, Shimoyama J, and Kishio K 1998 Phys. Rev. B 58 R5960(R)
[32] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, and Zhao Z X 2015 Phys. Rev. B 92 064515
[33] Wu D P, Meng X D, Zhai Y Y, Yu H M, Yu J, and Qi Y 2019 Materials 12 474
[34] Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, and Fang M H 2011 Europhys. Lett. 93 47004
[35] Sun S S, Wang S H, Yu R, and Lei H C 2017 Phys. Rev. B 96 064512
[36] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L, and Luo J L 2008 Phys. Rev. B 78 224512
[37] Meier W R, Kong T, Kaluarachchi U S, Taufour V, Jo N H, Drachuck G, Bohmer A E, Saunders S M, Sapkota A, Kreyssig A, Tanatar M A, Prozorov R, Goldman A I, Balakirev F F, Gurevich A, Bud'ko S L, and Canfield P C 2016 Phys. Rev. B 94 064501
[38] Smylie M P, Willa K, Bao J K, Ryan K, Islam Z, Claus H, Simsek Y, Diao Z, Rydh A, Koshelev A E, Kwok W K, Chung D Y, Kanatzidis M G, and Welp U 2018 Phys. Rev. B 98 104503
[39] Vedeneev S I, Piot B A, Maude D K, and Sadakov A V 2013 Phys. Rev. B 87 134512
[40] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z, and Cao G H 2019 Phys. Rev. B 99 144501
[41] Nakamura Y and Uchida S 1993 Phys. Rev. B 47 8369
[42] Kimura T, Kishio K, Kobayashi T, Nakayama Y, Motohira N, Kitazawa K, and Yamafuji K 1992 Physica C 192 247
[43] Ando Y, Boebinger G S, Passner A, Kimura T, and Kishio K 1995 Phys. Rev. Lett. 75 4662
[44] Boebinger G S, Ando Y, Passner A, Kimura T, Okuya M 1, Shimoyama J, Kishio K, Tamasaku K, Ichikawa N, and Uchida S 1996 Phys. Rev. Lett. 77 5417
[45] Terasaki I, Sato Y, Miyamoto S, Tajima S, and Tanaka S 1995 Phys. Rev. B 52 16246
[46] Takenaka K, Mizuhashi K, Takagi H, and Uchida S 1994 Phys. Rev. B 50 6534
[47] Tozer S W, Kleinsasser A W, Penney T, Kaiser D, and Holtzberg F 1987 Phys. Rev. Lett. 59 1768
[48] Hagen S J, Jing T W, Wang Z Z, Horvath J, and Ong N P 1988 Phys. Rev. B 37 7928
[49] Brawner D A, Wang Z Z, and Ong N P 1989 Phys. Rev. B 40 9329
[50] Martin S, Fiory A T, Fleming R M, Schneemeyer L F, and Waszczak J V 1990 Phys. Rev. B 41 846
[51] Wang N L, Buschinger B, Geibel C, and Steglch F 1996 Phys. Rev. B 54 7449
[52] Ando Y, Boebinger G S, Passner A, Wang N L, Geibel C, and Steglich F 1996 Phys. Rev. Lett. 77 2065
[53] Watanabe T, Fujii T, and Matsuda A 1997 Phys. Rev. Lett. 79 2113
[54] Martin S, Fiory A T, Fleming R M, Schneemeyer L F, and Waszczak J V 1988 Phys. Rev. Lett. 60 2194
[55] Fujii T, Watanabe T, and Matsuda A 2001 J. Cryst. Growth 223 175
[56] Fujii T, Terasaki I, Watanabe T, and Matsuda A 2002 Phys. Rev. B 66 024507
[57] Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolk T, H, von L, Shibauchi T, and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309
[58] Lubashevsky Y, Lahoud E, Chashka K, Podolsky D, and Kanigel A 2012 Nat. Phys. 8 309
[59] Rinott S, Chashka K, Ribak A, Rienks E D, Taleb-Ibrahimi A, Fevre P L, Bertran F, Randeria M, and Kanigel A 2017 Sci. Adv. 3 e1602372
[60] Mizukami Y, Haze M, Tanaka O, Matsuura K, Sano D, Böker J, Eremin I, Kasahara S, Matsuda Y, and Shibauchi T 2021 arXiv:2105.00739v1 [cond-mat.supr-con]
[61] Zhang S Y, Miao G Y, Guan J Q, Xu X F, Liu B, Yang F, Wang W H, Zhu X T, and Guo J D 2019 Chin. Phys. Lett. 36 107404
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 127401
[2] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 127401
[3] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 127401
[4] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 127401
[5] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 127401
[6] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127401
[7] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 127401
[8] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 127401
[9] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 127401
[10] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 127401
[11] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 127401
[12] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 127401
[13] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 127401
[14] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 127401
[15] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 127401
Viewed
Full text


Abstract