CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors |
B. L. Kang1†, M. Z. Shi1†, D. Zhao1, S. J. Li1, J. Li1, L. X. Zheng1, D. W. Song1, L. P. Nie1, T. Wu1,2,3,4,5*, and X. H. Chen1,2,3,4,5* |
1Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China 2Key Laboratory of Strongly coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China 3CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 5Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
B. L. Kang, M. Z. Shi, D. Zhao et al 2022 Chin. Phys. Lett. 39 127401 |
|
|
Abstract Recently, by intercalating organic ions into bulk FeSe superconductors, two kinds of layered FeSe-based superconductors [(TBA)$_{x}$FeSe and (CTA)$_{x}$FeSe] with superconducting transition temperatures ($T_{\rm c}$) above 40 K have been discovered. Due to the large interlayer distance ($\sim $15 Å), these new layered superconductors have a large resistivity anisotropy analogous to bismuth-based cuprate superconductors. Moreover, remarkable pseudogap behavior well above $T_{\rm c}$ is revealed by nuclear magnetic resonance (NMR) measurements on $^{77}$Se nuclei, suggesting a preformed pairing scenario similar to that of cuprates. Here, we report another new kind of organic-ion-intercalated FeSe superconductor, (PY)$_{x}$FeSe, with a reduced interlayer distance ($\sim $10 Å) compared to (TBA)$_{x}$FeSe and (CTA)$_{x}$FeSe. By performing $^{77}$Se NMR and transport measurements, we observe a similar pseudogap behavior well above $T_{\rm c}$ of $\sim $40 K and a large resistivity anisotropy of $\sim$$10^{\boldsymbol{4}}$ in (PY)$_{x}$FeSe. All these facts strongly support a universal pseudogap behavior in these layered FeSe-based superconductors with quasi-two-dimensional electronic structures.
|
|
Received: 20 September 2022
Express Letter
Published: 10 November 2022
|
|
|
|
|
|
[1] | Emery V J and Kivelson S A 1995 Nature 374 434 |
[2] | Corson J, Mallozzi R, Orenstein J, Eckstein J N, and Bozovic I 1999 Nature 398 221 |
[3] | Uemura Y J et al. 1989 Phys. Rev. Lett. 62 2317 |
[4] | Wang Y Y, Li L, and Ong N P 2006 Phys. Rev. B 73 024510 |
[5] | Tallon J L, Storey J G, and Loram J W 2011 Phys. Rev. B 83 092502 |
[6] | Li L, Wang Y Y, Komiya S, Ono S, Ando Y, Gu G D, and Ong N P 2010 Phys. Rev. B 81 054510 |
[7] | He Y, Chen S D, Li Z X, Zhao D, Song D, Yoshida Y, Eisaki H, Wu T, Chen X H, Lu D H, Meingast C, Devereaux T P, Birgeneau R J, Hashimoto M, Lee D H, and Shen Z X 2021 Phys. Rev. X 11 031068 |
[8] | Kasahara S, Yamashita T, Shi A, Kobayashi R, Shimoyama Y, Watashige T, Ishida K, Terashima T, Wolf T, Hardy F, Meingast C, Von Lohneysen H, Levchenko A, Shibauchi T, and Matsuda Y 2016 Nat. Commun. 7 12843 |
[9] | Hanaguri T, Kasahara S, Boker J, Eremin I, Shibauchi T, and Matsuda Y 2019 Phys. Rev. Lett. 122 077001 |
[10] | Takahashi H, Nabeshima F, Ogawa R, Ohmichi E, Ohta H, and Maeda A 2019 Phys. Rev. B 99 060503 |
[11] | Xu B, Munzar D, Dubroka A, Sheveleva E, Lyzwa F, Marsik P, Wang C N, Wang Z C, Cao G H, and Bernhard C 2020 Phys. Rev. B 101 214512 |
[12] | Hao J H, Hong W S, Zhou X X, Xiang Y, Dai Y M, Yang H, Li S L, Luo H Q, and Wen H H 2021 arXiv:2111.04422 [cond-mat.supr-con] |
[13] | Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu Y Z, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S L, Liu H Y, Duan Y X, Luo H Q, and Meng J Q 2021 arXiv:2109.06460 [cond-mat.supr-con] |
[14] | Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402 |
[15] | He S L et al. 2013 Nat. Mater. 12 605 |
[16] | Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, and Feng D L 2013 Nat. Mater. 12 634 |
[17] | Zhang W H et al. 2014 Chin. Phys. Lett. 31 017401 |
[18] | Zhang W H, Li Z, Li F S, Zhang H M, Peng J P, Tang C J, Wang Q Y, He K, Chen X, Wang L L, Ma X C, and Xue Q K 2014 Phys. Rev. B 89 060506 |
[19] | Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, and Chen X H 2020 Phys. Rev. Lett. 125 097003 |
[20] | Ono S and Ando Y 2003 Phys. Rev. B 67 104512 |
[21] | Chen X H, Yu M, Ruan K Q, Li S Y, Gui Z, Zhang G C, and Cao L Z 1998 Phys. Rev. B 58 14219 |
[22] | Xu Y, Rong H T, Wang Q Y, Wu D S, Hu Y, Cai Y Q, Gao Q, Yan H T, Li C, Yin C H, Chen H, Huang J W, Zhu Z H, Huang Y, Liu G D, Xu Z Y, Zhao L, and Zhou X J 2021 Nat. Commun. 12 2840 |
[23] | Faeth B D et al. 2021 Phys. Rev. X 11 021054 |
[24] | Wang Z C, He C Y, Tang Z T, Wu S Q, and Cao G H 2017 Sci. Chin. Mater. 60 83 |
[25] | Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, and Chen X H 2015 Nat. Mater. 14 325 |
[26] | Miyata Y, Nakayama K, Sugawara K, Sato T, and Takahashi T 2015 Nat. Mater. 14 775 |
[27] | Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, and Chen X H 2016 Phys. Rev. Lett. 116 077002 |
[28] | Berthier C, Julien M H, Horvatic M, and Berthier Y 1996 J. Phys. I (France) 6 2205 |
[29] | Korringa J 1950 Phys. (Amsterdam) 16 601 |
[30] | Alloul H, Ohno T, and Mendels P 1989 Phys. Rev. Lett. 63 1700 |
[31] | Ishida K, Yoshida K, Mito T, Tokunaga Y, Kitaoka Y, Asayama K, Nakayama Y, Shimoyama J, and Kishio K 1998 Phys. Rev. B 58 R5960(R) |
[32] | Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, and Zhao Z X 2015 Phys. Rev. B 92 064515 |
[33] | Wu D P, Meng X D, Zhai Y Y, Yu H M, Yu J, and Qi Y 2019 Materials 12 474 |
[34] | Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, and Fang M H 2011 Europhys. Lett. 93 47004 |
[35] | Sun S S, Wang S H, Yu R, and Lei H C 2017 Phys. Rev. B 96 064512 |
[36] | Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L, and Luo J L 2008 Phys. Rev. B 78 224512 |
[37] | Meier W R, Kong T, Kaluarachchi U S, Taufour V, Jo N H, Drachuck G, Bohmer A E, Saunders S M, Sapkota A, Kreyssig A, Tanatar M A, Prozorov R, Goldman A I, Balakirev F F, Gurevich A, Bud'ko S L, and Canfield P C 2016 Phys. Rev. B 94 064501 |
[38] | Smylie M P, Willa K, Bao J K, Ryan K, Islam Z, Claus H, Simsek Y, Diao Z, Rydh A, Koshelev A E, Kwok W K, Chung D Y, Kanatzidis M G, and Welp U 2018 Phys. Rev. B 98 104503 |
[39] | Vedeneev S I, Piot B A, Maude D K, and Sadakov A V 2013 Phys. Rev. B 87 134512 |
[40] | Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z, and Cao G H 2019 Phys. Rev. B 99 144501 |
[41] | Nakamura Y and Uchida S 1993 Phys. Rev. B 47 8369 |
[42] | Kimura T, Kishio K, Kobayashi T, Nakayama Y, Motohira N, Kitazawa K, and Yamafuji K 1992 Physica C 192 247 |
[43] | Ando Y, Boebinger G S, Passner A, Kimura T, and Kishio K 1995 Phys. Rev. Lett. 75 4662 |
[44] | Boebinger G S, Ando Y, Passner A, Kimura T, Okuya M 1, Shimoyama J, Kishio K, Tamasaku K, Ichikawa N, and Uchida S 1996 Phys. Rev. Lett. 77 5417 |
[45] | Terasaki I, Sato Y, Miyamoto S, Tajima S, and Tanaka S 1995 Phys. Rev. B 52 16246 |
[46] | Takenaka K, Mizuhashi K, Takagi H, and Uchida S 1994 Phys. Rev. B 50 6534 |
[47] | Tozer S W, Kleinsasser A W, Penney T, Kaiser D, and Holtzberg F 1987 Phys. Rev. Lett. 59 1768 |
[48] | Hagen S J, Jing T W, Wang Z Z, Horvath J, and Ong N P 1988 Phys. Rev. B 37 7928 |
[49] | Brawner D A, Wang Z Z, and Ong N P 1989 Phys. Rev. B 40 9329 |
[50] | Martin S, Fiory A T, Fleming R M, Schneemeyer L F, and Waszczak J V 1990 Phys. Rev. B 41 846 |
[51] | Wang N L, Buschinger B, Geibel C, and Steglch F 1996 Phys. Rev. B 54 7449 |
[52] | Ando Y, Boebinger G S, Passner A, Wang N L, Geibel C, and Steglich F 1996 Phys. Rev. Lett. 77 2065 |
[53] | Watanabe T, Fujii T, and Matsuda A 1997 Phys. Rev. Lett. 79 2113 |
[54] | Martin S, Fiory A T, Fleming R M, Schneemeyer L F, and Waszczak J V 1988 Phys. Rev. Lett. 60 2194 |
[55] | Fujii T, Watanabe T, and Matsuda A 2001 J. Cryst. Growth 223 175 |
[56] | Fujii T, Terasaki I, Watanabe T, and Matsuda A 2002 Phys. Rev. B 66 024507 |
[57] | Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolk T, H, von L, Shibauchi T, and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309 |
[58] | Lubashevsky Y, Lahoud E, Chashka K, Podolsky D, and Kanigel A 2012 Nat. Phys. 8 309 |
[59] | Rinott S, Chashka K, Ribak A, Rienks E D, Taleb-Ibrahimi A, Fevre P L, Bertran F, Randeria M, and Kanigel A 2017 Sci. Adv. 3 e1602372 |
[60] | Mizukami Y, Haze M, Tanaka O, Matsuura K, Sano D, Böker J, Eremin I, Kasahara S, Matsuda Y, and Shibauchi T 2021 arXiv:2105.00739v1 [cond-mat.supr-con] |
[61] | Zhang S Y, Miao G Y, Guan J Q, Xu X F, Liu B, Yang F, Wang W H, Zhu X T, and Guo J D 2019 Chin. Phys. Lett. 36 107404 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|