Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 127302    DOI: 10.1088/0256-307X/39/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$
A. Azarevich1, N. Bolotina2,1, O. Khrykina2, A. Bogach1, E. Zhukova3, B. Gorshunov3, A. Melentev3, Z. Bedran3, A. Alyabyeva3, M. Belyanchikov3, V. Voronov1, N. Yu. Shitsevalova4, V. B. Filipov4, and N. Sluchanko1*
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str. 38, Moscow 119991, Russia
2Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, 59 Leninskiy Prospect, Moscow 119333, Russia
3Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (National Research University), 141700 Dolgoprudny, Moscow Region, Russia
4Institute for Problems of Materials Science, NASU, Krzhizhanovsky Str. 3, 03142 Kyiv, Ukraine
Cite this article:   
A. Azarevich, N. Bolotina, O. Khrykina et al  2022 Chin. Phys. Lett. 39 127302
Download: PDF(10824KB)   PDF(mobile)(11305KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate high-quality single-domain crystals of YbB$_{12}$ using the precise x-ray diffraction technique in combination with the low-temperature polarized THz–infrared spectroscopy and accurate magnetotransport measurements. It is shown for the first time that this archetypal strongly correlated system with a metal-insulator transition to a mysterious dielectric ground state with a metal Fermi surface [Science 362, 65 (2018) and ibid 362, 32 (2018)] is actually a heterogeneous compound in the regime of electronic phase separation. Changes in the configuration of the discovered dynamic charge stripes are proposed upon cooling. As a result, a conclusion is drawn in favor of a crossover between different patterns of the filamentary electronic structure penetrating the semiconducting matrix of YbB$_{12}$. We argue that the discovery of stripes in YbB$_{12}$ is fundamental, elucidating the nature of exotic dielectric state in Kondo insulators.
Received: 06 October 2022      Published: 02 December 2022
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/127302       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/127302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Azarevich
N. Bolotina
O. Khrykina
A. Bogach
E. Zhukova
B. Gorshunov
A. Melentev
Z. Bedran
A. Alyabyeva
M. Belyanchikov
V. Voronov
N. Yu. Shitsevalova
V. B. Filipov
and N. Sluchanko
[1] Iga F, Shimizu N, and Takabatake T 1998 J. Magn. Magn. Mater. 177 337
[2] Iga F, Takakuwa Y, Takahashi T, Kasaya M, Kasuya T, and Sagawa T 1984 Solid State Commun. 50 903
[3] Kasuya T, Kasaya M, Takegahara K, Fujita T, Goto T, Tamaki A, Takigawa M, and Yasuoka H 1983 J. Magn. Magn. Mater. 31–34 447
[4]Sluchanko N E 2021 Magnetism, Quantum Criticality, and Metal-Insulator Transitions in RB$_{12}$, in Rare-Earth Borides edited by Inosov D S (Singapore: Jenny Stanford Publishing) chap 4 p 331
[5] Kayama S, Tanaka S, Miyake A, Kagayama T, Shimizu K, and Iga F 2014 JPS Conf. Proc. 3 012024
[6] Xiang Z, Chen L, Chen K W, Tinsman C, Sato Y, Asaba T, Lu H, Kasahara Y, Jaime M, Balakirev F, Iga F, Matsuda Y, Singleton J, and Li L 2021 Nat. Phys. 17 788
[7]Sato Y 2021 Quantum Oscillations and Charge-Neutral Fermions in Topological Kondo Insulator YbB$_{12}$ (Berlin: Springer Theses, Springer Nature Singapore Pte Ltd.)
[8]Grewe N and Steglich F 1991 Handbook on the Physics and Chemistry of Rare Earths edited by Gschneidner J K A and Eyring L (Amsterdam: Elsevier)
[9] Saso T and Harima H 2003 J. Phys. Soc. Jpn. 72 1131
[10] Lu F, Zhao J Z, Weng H M, Fang Z, and Dai X 2013 Phys. Rev. Lett. 110 096401
[11] Weng H M, Zhao J Z, Wang Z J, Fang Z, and Dai X 2014 Phys. Rev. Lett. 112 016403
[12] Hagiwara K, Ohtsubo Y, Matsunami M, Ideta S, Tanaka K, Miyazaki H, Rault J E, Fevre P L, Bertran F, Taleb-Ibrahimi A, Yukawa R, Kobayashi M, Horiba K, Kumigashira H, Sumida K, Okuda T, Iga F, and Kimura S 2016 Nat. Commun. 7 12690
[13] Kasuya T 1996 J. Phys. Soc. Jpn. 65 2548
[14] Xiang Z, Kasahara Y, Asaba T, Lawson B, Tinsman C, Chen L, Sugimoto K, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y, and Li L 2018 Science 362 65
[15] Sato Y, Xiang Z, Kasahara Y, Kasahara S, Chen L, Tinsman C, Iga F, Singleton J, Nair N L, Maksimovic N, Analytis J G, Li L, and Matsuda Y 2021 J. Phys. D 54 404002
[16] Sato Y, Xiang Z, Kasahara Y, Taniguchi T, Kasahara S, Chen L, Asaba T, Tinsman C, Murayama H, Tanaka O, Mizukami Y, Shibauchi T, Iga F, Singleton J, Li L, and Matsuda Y 2019 Nat. Phys. 15 954
[17] Bolotina N, Khrykina O, Azarevich A, Gavrilkin S, and Sluchanko N 2020 Acta Crystallogr. B 76 1117
[18]Bolotina N B, Dudka A P, Khrykina O N, and Mironov V S 2021 Crystal Structure of Dodecaborides: Complexity and Simplicity, in Rare-Earth Borides edited by Inosov D S (Singapore: Jenny Stanford Publishing) chap 3 p 293
[19] Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A, and Howald C 2003 Rev. Mod. Phys. 75 1201
[20] Bolotina N B, Dudka A P, Khrykina O N, Krasnorussky V N, Shitsevalova N Y, Filipov V B, and Sluchanko N E 2018 J. Phys.: Condens. Matter 30 265402
[21] Bolotina N B, Khrykina O N, Azarevich A N, Shitsevalova N Y, Filipov V B, Gavrilkin S Y, Mitsen K V, Voronov V V, and Sluchanko N E 2022 Phys. Rev. B 105 054511
[22] Sluchanko N E, Azarevich A N, Bogach A V, Bolotina N B, Glushkov V V, Demishev S V, Dudka A P, Khrykina O N, Filipov V B, Shitsevalova N Y, Komandin G A, Muratov A V, Aleshchenko Y A, Zhukova E S, and Gorshunov B P 2019 J. Phys.: Condens. Matter 31 065604
[23]Supplementary Information: The experimental details of terahertz-infrared and Hall effect measurements; XRD data analysis in YbB$_{12}$; the gap values detected previously for YbB$_{12}$ and Tm$_{1-x}$Yb$_{x}$B$_{12}$.
[24] Sluchanko N E, Azarevich A N, Bogach A V, Glushkov V V, Demishev S V, Anisimov M A, Levchenko A V, Filipov V B, and Shitsevalova N Y 2012 J. Exp. Theor. Phys. 115 509
[25] Gorshunov B, Haas P, Ushakov O, Dressel M, and Iga F 2006 Phys. Rev. B 73 045207
[26] Okamura H, Michizawa T, Nanba T, Kimura S, Iga F, and Takabatake T 2005 J. Phys. Soc. Jpn. 74 1954
[27] Zhukov S S, Zhukova E S, Melentev A V, Gorshunov B P, Tsapenko A P, Kopylova D S, and Nasibulin A G 2022 Carbon 189 413e421
[28] Nakanishi T and Ando T 2009 J. Phys. Soc. Jpn. 78 114708
[29] Krasikov K M, Azarevich A N, Glushkov V V, Demishev S V, Khoroshilov A L, Bogach A V, Shitsevalova N Y, Filippov V B, and Sluchanko N E 2020 JETP Lett. 112 413
[30] Sluchanko N, Azarevich A, Bogach A, Demishev S, Krasikov K, Voronov V, Filipov V, Shitsevalova N, Glushkov V 2021 Phys. Rev. B 103 035117
[31] Nemkovski K S, Mignot J M, Alekseev P A, Ivanov A S, Nefeodova E V, Rybina A V, Regnault L P, Iga F, and Takabatake T 2007 Phys. Rev. Lett. 99 137204
[32] Altshuler T S, Goryunov Y V, Bresler M S, Iga F, and Takabatake T 2003 Phys. Rev. B 68 014425
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 127302
[2] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 127302
[3] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 127302
[4] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 127302
[5] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 127302
[6] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 127302
[7] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 127302
[8] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 127302
[9] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 127302
[10] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 127302
[11] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 127302
[12] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 127302
[13] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 127302
[14] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 127302
[15] Rui-Kuan Xie, Ai-Jiang Lu, Huai-Zhong Xing, Yi-Jie Zeng, Yan Huang, Xiao-Shuang Chen. First Principles Study on the Magnetism of Rectangular Nanosilicenes[J]. Chin. Phys. Lett., 2018, 35(1): 127302
Viewed
Full text


Abstract