Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 127301    DOI: 10.1088/0256-307X/39/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Two-Dimensional Electron Gas in MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ Heterojunction by First Principles Calculation
Ruiling Gao1†, Chao Liu1†, Le Fang1†*, Bixia Yao1, Wei Wu1, Qiling Xiao1, Shunbo Hu1, Yu Liu1*, Heng Gao1,2,3,4, Shixun Cao1, Guangsheng Song2, Xiangjian Meng4, Xiaoshuang Chen4, and Wei Ren1*
1Physics Department, State Key Laboratory of Advanced Special Steel, Materials Genome Institute, Shanghai Key Laboratory of High Temperature Superconductors, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
2Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Maanshan 243002, China
3State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
4State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Cite this article:   
Ruiling Gao, Chao Liu, Le Fang et al  2022 Chin. Phys. Lett. 39 127301
Download: PDF(9810KB)   PDF(mobile)(10200KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Van der Waals (vdW) layered two-dimensional (2D) materials, which may have high carrier mobility, valley polarization, excellent mechanical properties and air stability, have been widely investigated before. We explore the possibility of producing a spin-polarized two-dimensional electron gas (2DEG) in the heterojunction composed of insulators MoSi$_{2}$N$_{4}$ and VSi$_{2}$N$_{4}$ by using first-principles calculations. Due to the charge transfer effect, the 2DEG at the interface of the MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ heterojunction is found. Further, for different kinds of stacking of heterojunctions, lattice strain and electric fields can effectively tune the electronic structures and lead to metal-to-semiconductor transition. Under compressive strain or electric field parallel to $c$ axis, the 2DEG disappears and band gap opening occurs. On the contrary, interlayer electron transfer enforces the system to become metallic under the condition of tensile strain or electric field anti-parallel to $c$ axis. These changes are mainly attributed to electronic redistribution and orbitals' reconstruction. In addition, we reveal that MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ lateral heterojunctions of armchair and zigzag edges exhibit different electronic properties, such as a large band gap semiconductor and a metallic state. Our findings provide insights into electronic band engineering of MoSi$_{2}$N$_{4}$/VSi$_{2}$N$_{4}$ heterojunctions and pave the way for future spintronics applications.
Received: 18 August 2022      Published: 22 November 2022
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.20.-r (Electron states at surfaces and interfaces)  
  71.10.Ca (Electron gas, Fermi gas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/127301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruiling Gao
Chao Liu
Le Fang
Bixia Yao
Wei Wu
Qiling Xiao
Shunbo Hu
Yu Liu
Heng Gao
Shixun Cao
Guangsheng Song
Xiangjian Meng
Xiaoshuang Chen
and Wei Ren
[1] Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H, and Kawasaki M J S 2007 Science 315 1388
[2] Knap W, Fal'ko V, Frayssinet E et al. 2004 J. Phys.: Condens. Matter. 16 3421
[3] Efros A 1988 Solid State Commun. 67 1019
[4] Ohtomo A and Hwang H 2004 Nature 427 423
[5] Betancourt J, Paudel T R, Tsymbal E Y, and Velev J P 2017 Phys. Rev. B 96 045113
[6] Ariando A, Wang X, Baskaran G et al. 2011 Nat. Commun. 2 188
[7] Xie Y W, Bell C, Hikita Y, Harashima S, Hwang H Y 2013 Adv. Mater. 25 4735
[8] Paudel T R and Tsymbal E Y 2017 Phys. Rev. B 96 245423
[9] Fang L, Chen C, Yang Y et al. 2019 Phys. Chem. Chem. Phys. 21 8046
[10] Gariglio S, Reyren N, Caviglia A, and Triscone J M 2009 J. Phys.: Condens. Matter. 21 164213
[11] Weng Y K, Niu W, Huang X, An M, and Dong S 2021 Phys. Rev. B 103 214101
[12] Cheng J L, Nazir S, and Yang K S 2016 ACS Appl. Mater. Inter. 8 31959
[13] Chen Y, Bovet N, Trier F et al. 2013 Nat. Commun. 4 1371
[14] Cao C, Chen S, Deng J et al. 2022 Chin. Phys. Lett. 39 047301
[15] Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666
[16] Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, and Samorì P 2018 Chem. Soc. Rev. 47 4860
[17] Mir S H, Yadav V K, and Singh J K 2020 ACS Omega 5 14203
[18] Sohier T, Gibertini M, Campi D, Pizzi G, and Marzari N 2019 Nano Lett. 19 3723
[19] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[20] Hong Y L, Liu Z, Wang L et al. 2020 Science 369 670
[21] Wang L, Shi Y, Liu M et al. 2020 arXiv:2008.02981 [cond-mat.mtrl-sci]
[22] Guo S D, Mu W Q, Zhu Y T, Han R Y, and Ren W C 2021 J. Mater. Chem. C 9 2464
[23] Bafekry A, Faraji M, Abdollahzadeh A et al. 2021 New J. Chem. 45 8291
[24] Zeng J, Xu L, Yang Y et al. 2021 Phys. Chem. Chem. Phys. 23 8318
[25] Ai H, Liu D, Geng J, Wang S, Lo K H, and Pan H 2021 Phys. Chem. Chem. Phys. 23 3144
[26] Cui Q, Zhu Y, Liang J, Cui P, and Yang H 2021 Phys. Rev. B 103 085421
[27] Binh N T, Nguyen C Q, Vu T V, and Nguyen C V 2021 J. Phys. Chem. Lett. 12 3934
[28] Pham K D, Nguyen C Q, Nguyen C, Cuong P V, and Hieu N V 2021 New J. Chem. 45 5509
[29] Bafekry A, Faraji M, Fadlallah M M et al. 2021 Appl. Surf. Sci. 559 149862
[30] Bian Y T, Liu G H, Qian S H, Ding X X, and Liu H X 2020 arXiv:2012.04162 [cond-mat.mtrl-sci]
[31] Bafekry A, Stampfl C, Naseri M et al. 2021 J. Appl. Phys. 129 155103
[32] Guo X S and Guo S D 2020 arXiv:2008.08747 [cond-mat.mtrl-sci]
[33] Wu Q, Cao L, Ang Y S, and Ang L K 2021 Appl. Phys. Lett. 118 113102
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Chevary J A, Vosko S H et al. 1992 Phys. Rev. B 46 6671
[37] Dion M, Rydberg H, Schröder E, Langreth D C, and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[38] Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354
[39] Alfè D 2009 Comput. Phys. Commun. 180 2622
[40] Wang Z and Zhou G 2019 J. Phys. Chem. C. 124 167
[41] Zólyomi V, Drummond N, and Fal'Ko V 2014 Phys. Rev. B 89 205416
[42] Marschall R 2014 Adv. Funct. Mater. 24 2421
[43] Yang J, Zhao L, Shi-Qi L et al. 2021 Nanoscale 13 5479
[44] MacNeill D, Heikes C, Mak K F et al. 2015 Phys. Rev. Lett. 114 037401
[45] Aivazian G, Gong Z, Jones A M et al. 2015 Nat. Phys. 11 148
[46] Hu T, Zhao G, Gao H et al. 2020 Phys. Rev. B 101 125401
[47] Rani D, Bainsla L, Alam A, and Suresh K 2020 J. Appl. Phys. 128 220902
[48] Gao S, Yang L, and Spataru C D 2017 Nano Lett. 17 7809
[49] He J, Hummer K, and Franchini C 2014 Phys. Rev. B 89 075409
[50] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067
Related articles from Frontiers Journals
[1] Wen-Xue Huo, Ming-Long Zhao, Xian-Sheng Tang, Li-Li Han, Zhen Deng, Yang Jiang, Wen-Xin Wang, Hong Chen, Chun-Hua Du, and Hai-Qiang Jia. Effect of Dopant Concentration in a Base Layer on Photocurrent–Voltage Characteristics of Photovoltaic Power Converters[J]. Chin. Phys. Lett., 2020, 37(8): 127301
[2] Yu-Wei Li, Xin Wang, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei. Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals[J]. Chin. Phys. Lett., 2020, 37(1): 127301
[3] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 127301
[4] Yan-Ping Wang, Jin-Ying Huang, Jiang-Shan Chen, Xian-Feng Qiao, De-Zhi Yang, Dong-Ge Ma, Li-Song Dong. The Hole Transport Characteristics of 1, 4, 5, 8, 9 and 11-Hexaazatriphenylene-Hexacarbonitrile by Blending[J]. Chin. Phys. Lett., 2016, 33(02): 127301
[5] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 127301
[6] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 127301
[7] GAO Jun-Ning,JIE Wan-Qi**,YUAN Yan-Yan,ZHA Gang-Qiang,XU Ling-Yan,WU Heng,WANG Ya-Bin,YU Hui,ZHU Jun-Fa. In-Situ SRPES Study on the Band Alignment of (0001)CdS/CdTe Heterojunction[J]. Chin. Phys. Lett., 2012, 29(5): 127301
[8] HUANG Jian**, WANG Lin-Jun, TANG Ke, XU Run, ZHANG Ji-Jun, LU Xiong-Gang, XIA Yi-Ben . Photoresponse Properties of an n-ZnS/p-Si Heterojunction[J]. Chin. Phys. Lett., 2011, 28(12): 127301
[9] FAN Hui-Jie, ZHANG Hui-Qiang, WU Jing-Jing, WEN Zheng-Fang, MA Feng-Ying** . Photovoltaic Behaviors in an Isotype n-TiO2/n-Si Heterojunction[J]. Chin. Phys. Lett., 2011, 28(12): 127301
[10] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 127301
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 127301
[12] JIN Ke-Xin**, LUO Bing-Cheng, ZHAO Sheng-Gui, WANG Jian-Yuan, CHEN Chang-Le . Leakage Current and Photovoltaic Properties in a Bi2Fe4O9/Si Heterostructure[J]. Chin. Phys. Lett., 2011, 28(8): 127301
[13] DUAN Li**, GAO Wei . Influence of Oxygen in Sputtering and Annealing Processes on Properties of ZnO:Ag Films Deposited by rf Sputtering[J]. Chin. Phys. Lett., 2011, 28(3): 127301
[14] YI Ming-Dong, **, XIE Ling-Hai, LIU Yu-Yu, DAI Yan-Feng, HUANG Jin-Ying . Electrical Characteristics of High-Performance ZnO Field-Effect Transistors Prepared by Ultrasonic Spray Pyrolysis Technique[J]. Chin. Phys. Lett., 2011, 28(1): 127301
[15] MA Jing-Jing, JIN Ke-Xin, LUO Bing-Cheng, FAN Fei, XING Hui, ZHOU Chao-Chao, CHEN Chang-Le. Rectifying and Photovoltage Properties of ZnO:Al/p-Si Heterojunction[J]. Chin. Phys. Lett., 2010, 27(10): 127301
Viewed
Full text


Abstract