Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 127201    DOI: 10.1088/0256-307X/39/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tunable Thermal Conductivity of Ferroelectric P(VDF-TrFE) Nanofibers via Molecular Bond Modulation
Lan Dong1,2, Bohai Liu3, Yuanyuan Wang1,2*, and Xiangfan Xu3*
1School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
2Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Polytechnic University, Shanghai 201209, China
3Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Cite this article:   
Lan Dong, Bohai Liu, Yuanyuan Wang et al  2022 Chin. Phys. Lett. 39 127201
Download: PDF(3400KB)   PDF(mobile)(3405KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dipoles in ferroelectric copolymer P(VDF-TrFE) can be driven by electric field, introducing phonon transport modulations via polarizing molecular chains. The thermal conductivity in single 75/25 P(VDF-TrFE) nanofibers is found to increase with electric field related phonon renormalization, resulted from change in vibrational assignment excited by polarization process. This is evidenced by a direct change of bond energy and bond length in 75/25 P(VDF-TrFE) nanofibers from Raman characterization under polarization electric field. The experimental results provide further intuitive evidences that the size of ferroelectric polymers could directly affect the ferroelectricity from the size-dependent thermal transport measurement.
Received: 27 September 2022      Published: 04 December 2022
PACS:  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  44.10.+i (Heat conduction)  
  66.30.hk (Polymers)  
  74.25.Kc (Phonons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/127201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/127201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lan Dong
Bohai Liu
Yuanyuan Wang
and Xiangfan Xu
[1] Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, and Ozyilmaz B 2010 Phys. Rev. Lett. 105 166602
[2] Sun Y L, Xie D, Xu J L, Li X M, Li X, Zhang C, Dai R X, Meng X J, and Zhu H W 2016 Carbon 96 695
[3] Scott J F and de Paz A C A 1989 Science 246 1400
[4] Lipatov A, Sharma P, Gruverman A, and Sinitskii A 2015 ACS Nano 9 8089
[5] Boyn S, Girod S, Garcia V, Fusil S, Xavier S, Deranlot C, Yamada H, Carretero C, Jacquet E, Bibes M, Barthelemy A, and Grollier J 2014 Appl. Phys. Lett. 104 52909
[6] Kim J, Lee J H, Ryu H, Lee J H, Khan U, Kim H, Kwak S S, and Kim S W 2017 Adv. Funct. Mater. 27 1700702
[7] Chang J Y, Dommer M, Chang C, and Lin L W 2012 Nano Energy 1 356
[8] Crossley S, Whiter R A, and Kar-Narayan S 2014 Mater. Sci. Technol. 30 1613
[9] Kaczmarek H, Królikowski B, Klimiec E, Chylińska M, and Bajer D 2019 Russ. Chem. Rev. 88 749
[10] Lim A R and Lee K S 2011 J. Appl. Phys. 110 033520
[11] Tayi A S, Kaeser A, Matsumoto M, Aida T, and Stupp S I 2015 Nat. Chem. 7 281
[12] Abolhasani M M, Zarejousheghani F, Cheng Z, and Naebe M 2015 RSC Adv. 5 22471
[13] Wang X L, Li B, Zhong X L, Zhang Y, Wang J B, and Zhou Y C 2012 J. Appl. Phys. 112 114103
[14] Singha A, Donati F, Wäckerlin C, Baltic R, Dreiser J, Pivetta M, Rusponi S, and Brune H 2016 Nano Lett. 16 3475
[15] Goodwin C A P, Ortu F, Reta D, Chilton N F, and Mills D P 2017 Nature 548 439
[16] Kushida-Abdelghafar K, Miki H, Torii K, and Fujisaki Y 1996 Appl. Phys. Lett. 69 3188
[17] Lee W, Kahya O, Toh C T, Ozyilmaz B, and Ahn J H 2013 Nanotechnology 24 475202
[18] Xiong C, Pernice W H P, Ngai J H, Reiner J W, Kumah D, Walker F J, Ahn C H, and Tang H X 2014 Nano Lett. 14 1419
[19] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T, and So F 2017 Adv. Funct. Mater. 27 1700461
[20] Guo M F, Jiang J Y, Shen Z H, Lin Y H, Nan C W, and Shen Y 2019 Mater. Today 29 49
[21] Dang Z M, Yuan J K, Yao S H, and Liao R J 2013 Adv. Mater. 25 6334
[22] Li Z, Zhang L, Qi R, Xie F, and Qi S 2016 RSC Adv. 6 35884
[23] Deng S, Ma D, Zhang G, and Yang N 2021 J. Mater. Chem. A 9 24472
[24] Pan D K, Zong Z C, and Yang N 2022 Acta Phys. Sin. 71 086302 (in Chinese)
[25] An M, Sun X H, Chen D S, and Yang N 2022 Acta Phys. Sin. 71 166501 (in Chinese)
[26] Mahdi R I, Gan W C, Abd M W H, Mukri N I, and Furukawa T 2018 Polymer 141 184
[27] da Silva A B, Wisniewski C, Esteves J V A, and Gregorio R 2010 J. Mater. Sci. 45 4206
[28] Hasegawa R, Takahashi Y, Chatani Y, and Tadokoro H 1972 Polym. J. 3 600
[29] Hasegawa R, Kobayashi M, and Tadokoro H 1972 Polym. J. 3 591
[30] Bachmann M, Gordon W, Weinhold S, and Lando J 1980 J. Appl. Phys. 51 5095
[31] Li M Y, Wondergem H J, Spijkman M J, Asadi K, Katsouras I, Blom P W M, and De Leeuw D M 2013 Nat. Mater. 12 433
[32] Milani A, Castiglioni C, and Radice S 2015 J. Phys. Chem. B 119 4888
[33] Takahashi Y, Matsubara Y, and Tadokoro H 1983 Macromolecules 16 1588
[34] Lovinger A J, Davis G T, Furukawa T, and Broadhurst M 1982 Macromolecules 15 323
[35] Xi Q, He J, Xu X, Nakayama T, Wang Y, Liu J Z J, and Li B 2020 Chin. Phys. Lett. 37 104401
[36] Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[37] Liu J and Yang R 2012 Phys. Rev. B 86 104307
[38] Dong L, Xi Q, Zhou J, Xu X, and Li B 2020 Phys. Rev. Appl. 13 034019
[39] Xu X F, Pereira L F C, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Tinh B C, Xie R G, Thong J T L, Hong B H, Loh K P, Donadio D, Li B W, and Özyilmaz B 2014 Nat. Commun. 5 3689
[40] Guo J, Huang Y, Wu X, Wang Q, Zhou X, Xu X, and Li B 2019 Phys. Status Solidi RRL 13 1800529
[41] Aiyiti A, Zhang Z, Chen J, Chen B, Hu S, Xu X, and Li B 2018 Carbon 140 673
[42] Xu X, Zhou J, and Chen J 2020 Adv. Funct. Mater. 30 1904704
[43] Dong L, Xu X, and Li B 2018 Appl. Phys. Lett. 112 221904
[44] Dong L, Xi Q, Chen D S, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X, and Li B 2018 Natl. Sci. Rev. 5 500
[45] Na H N, Chen P, Wong S C, Hague S, and Li Q 2012 Polymer 53 2736
[46] Furukawa T, Nakajima T, and Takahashi Y 2006 IEEE Trans. Dielect. Electr. Insul. 13 1120
[47] Deng S, Yuan J, Lin Y, Yu X, Ma D, Huang Y, Ji R, Zhang G, and Yang N 2021 Nano Energy 82 105749
[48] Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S, and Hopkins P E 2015 Nano Lett. 15 1791
[49] Zhou J, Xi Q, He J, Xu X, Nakayama T, Wang Y, and Liu J 2020 Phys. Rev. Mater. 4 015601
[50] Lu Y, He C, Song G, Wu B, Chung C H, and Lee Y C 2014 Ultrasonics 54 296
[51] Guimarães N J M, Oliveira J O N, and Faria R M 2000 Appl. Phys. A 71 267
[52] Zhang T, Wu X, and Luo T 2014 J. Phys. Chem. C 118 21148
[53] Cortili G and Zerbi G 1967 Spectrochim. Acta A 23 285
[54] Arrigoni A, Brambilla L, Bertarelli C, Serra G, Tommasini M, and Castiglioni C 2020 RSC Adv. 10 37779
[55] Green J S, Rabe J P, and Rabolt J F 1986 Macromolecules 19 1725
[56] Mollica N V, Cassone G, Ponterio R C, Saija F, Sponer J, Tommasini M, and Trusso S 2020 J. Phys. Chem. A 124 10856
[57] Bystrov V S, Paramonova E V, Bdikin I K, Bystrova A V, Pullar R C, Kholkin A L 2013 J. Mol. Model. 19 3591
Related articles from Frontiers Journals
[1] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. Reply to “Comment on ‘High Mixing Entropy Enhanced Energy States in Metallic Glasses’”[J]. Chin. Phys. Lett., 2022, 39(11): 127201
[2] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. High Mixing Entropy Enhanced Energy States in Metallic Glasses[J]. Chin. Phys. Lett., 2022, 39(4): 127201
[3] Tong Lu, Song Ling Liu, Yong Hao Sun, Wei-Hua Wang, and Ming-Xiang Pan. A Free-Volume Model for Thermal Expansion of Metallic Glass[J]. Chin. Phys. Lett., 2022, 39(3): 127201
[4] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 127201
[5] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 127201
[6] Li-Yu HAO, Tie YANG, Xiao-Tian WANG, Ming TAN. Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound[J]. Chin. Phys. Lett., 2019, 36(6): 127201
[7] Le-Min Zhang, Bin-Bin Jiao, Shi-Chang Yun, Yan-Mei Kong, Chih-Wei Ku, Da-Peng Chen. A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks[J]. Chin. Phys. Lett., 2017, 34(2): 127201
[8] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center[J]. Chin. Phys. Lett., 2012, 29(6): 127201
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 127201
[10] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2010, 27(6): 127201
[11] WANG Zhi-Xin, LU Jin-Bin, YANG Wei-Tie. Formability and Thermal Stability of Ce62Al15Fe8Co15 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2010, 27(2): 127201
[12] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 127201
[13] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 127201
[14] YANG Hong-Wang, TONG Wei-Ping, ZHAO Xiang, ZUO Liang, WANG Jian-Qiang. Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(9): 127201
[15] DING Ding, XIA Lei, SHAN Shao-Tai, DONG Yuan-Da. Long-Term Thermal Stability of Binary Cu50.3Zr49.7 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(1): 127201
Viewed
Full text


Abstract