Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 124202    DOI: 10.1088/0256-307X/39/12/124202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator
Ya-Jing Jiang1, Xing-Dong Zhao1*, Shi-Qiang Xia1*, Chun-Jie Yang1*, Wu-Ming Liu2, and Zun-Lue Zhu1
1School of Physics, Henan Normal University, Xinxiang 453007, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia et al  2022 Chin. Phys. Lett. 39 124202
Download: PDF(3529KB)   PDF(mobile)(3534KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically study optomechanically induced transparency in a spinning Kerr-nonlinear resonator. The interplay between the optical Kerr effect and the Sagnac effect provides a flexible tool for modifying the optomechanically induced transparency windows of the signal comparing to the system of a single spinning resonator. It is found that the system will exhibit distinct transparency phenomenon and fast-to-slow light effects. More importantly, a symmetric transparency window appears by adjusting the rotation-induced Sagnac frequency shift to compensate for the Kerr-induced frequency shift. These results open up a new way to explore novel light propagation of optomechanically induced transparency devices in spinning resonators with Kerr nonlinearity.
Received: 21 September 2022      Published: 02 December 2022
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.81.Pa (Sensors, gyros)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/124202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/124202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Jing Jiang
Xing-Dong Zhao
Shi-Qiang Xia
Chun-Jie Yang
Wu-Ming Liu
and Zun-Lue Zhu
[1] Aspelmeyer M, Kippenberg T J, and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Metcalfe M 2014 Appl. Phys. Rev. 1 031105
[3] Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A, Mackowski J M, Michel C, Pinard L, Français O, and Rousseau L 2006 Phys. Rev. Lett. 97 133601
[4] Gavartin E, Verlot P, and Kippenberg T J 2012 Nat. Nanotechnol. 7 509
[5] Rashid M, Toros̈ M, Setter A, and Ulbricht H 2018 Phys. Rev. Lett. 121 253601
[6] Zhao W, Zhang S D, Miranowicz A, Jing H 2020 Sci. Chin. Phys. Mech. Astron. 63 224211
[7] Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A, and Polzik E S 2014 Nature 507 81
[8] Lecocq F, Clark J B, Simmonds R W, Aumentado J, and Teufel J D 2016 Phys. Rev. Lett. 116 043601
[9] Grudinin I S, Lee H, Painter O, and Vahala K J 2010 Phys. Rev. Lett. 104 083901
[10] Jing H, Özdemir Ş K, Lü X Y, Zhang J, Yang L, and Nori F 2014 Phys. Rev. Lett. 113 053604
[11] Kim S, Xu X, Taylor J M, and Bahl G 2017 Nat. Commun. 8 205
[12] Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y X, Rotter S, and Yang L 2018 Nat. Photon. 12 479
[13] Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, and Schwab K C 2015 Science 349 952
[14] Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, and Gröblacher S 2016 Nature 530 313
[15] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, and Kippenberg T J 2010 Science 330 1520
[16] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, and Painter O 2011 Nature 472 69
[17] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, and Kippenberg T J 2013 Nat. Phys. 9 179
[18] Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601
[19] Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L, and Nori F 2015 Sci. Rep. 5 9663
[20] Shen Z, Dong C H, Chen Y, Xiao Y F, Sun F W, and Guo G C 2016 Opt. Lett. 41 1249
[21] Lü H, Wang C Q, Yang L, and Jing H 2018 Phys. Rev. Appl. 10 014006
[22] Zhang H, Saif F, Jiao Y, and Jing H 2018 Opt. Express 26 25199
[23] Lu T X, Jiao Y F, Zhang H L, Saif F, and Jing H 2019 Phys. Rev. A 100 013813
[24] Bodiya T, Sudhir V, Wipf C, Smith N, Buikema A, Kontos A, Yu H, and Mavalvala N 2019 Phys. Rev. A 100 013853
[25] Xiong H, Si L G, Zheng A S, Yang X, and Wu Y 2012 Phys. Rev. A 86 013815
[26] Jiao Y, Lü H, Qian J, Li Y, and Jing H 2016 New J. Phys. 18 083034
[27] Fan L, Fong K Y, Poot M, and Tang H X 2015 Nat. Commun. 6 5850
[28] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photon. 10 657
[29] Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, and Painter O 2017 Nat. Phys. 13 465
[30] Verhagen E and Alù A 2017 Nat. Phys. 13 922
[31] Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, and Dong C H 2018 Nat. Commun. 9 1797
[32] Hill J T, Safavi-Naeini A H, Chan J, and Painter O 2012 Nat. Commun. 3 1196
[33] Liu Y X, Davanço M, Aksyuk V, and Srinivasan K 2013 Phys. Rev. Lett. 110 223603
[34] Vahala K J 2003 Nature 424 839
[35] Lin G, Coillet A, and Chembo Y K 2017 Adv. Opt. Photon. 9 828
[36] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, and Kimble H J 2008 Science 319 1062
[37] Junge C, O'Shea D, Volz J, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 213604
[38] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[39] Ilchenko V S and Matsko A B 2006 IEEE J. Sel. Top. Quantum Electron. 12 15
[40] Özdemir Ş K, Zhu J, Yang X, Peng B, Yilmaz H, He L, Monifi F, Huang S H, Long G L, and Yang L 2014 Proc. Natl. Acad. Sci. USA 111 E3836
[41] Li B B, Clements W R, Yu X C, Shi K, Gong Q, and Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657
[42] Foreman M R, Swaim J D, and Vollmer F 2015 Adv. Opt. Photon. 7 168
[43] Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, and Yang L 2017 Nature 548 192
[44] Braginsky V B, Gorodetsky M L, and Ilchenko V S 1989 Phys. Lett. A 137 393
[45] Kippenberg T J, Spillane S M, and Vahala K J 2004 Phys. Rev. Lett. 93 083904
[46] Spillane S M, Kippenberg T J, and Vahala K J 2002 Nature 415 621
[47] Yang Q F, Yi X, Yang K Y, and Vahala K 2017 Nat. Photon. 11 560
[48] Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L, and Kippenberg T J 2017 Nat. Phys. 13 94
[49] Guo X, Zou C L, Jung H, and Tang H X 2016 Phys. Rev. Lett. 117 123902
[50] Li Q, Davanço M, and Srinivasan K 2016 Nat. Photon. 10 406
[51] Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, and Xiao Y F 2017 Phys. Rev. Lett. 118 033901
[52] Jiao Y F, Lu T X, and Jing H 2018 Phys. Rev. A 97 013843
[53] Post E J 1967 Rev. Mod. Phys. 39 475
[54] Chow W W, Gea-Banacloche J, Pedrotti L M, Sanders V E, Schleich W, and Scully M O 1985 Rev. Mod. Phys. 57 61
[55] Ciminelli C, Dell'Olio F, Campanella C E, and Armenise M N 2010 Adv. Opt. Photon. 2 370
[56] Ge L, Sarma R, and Cao H 2014 Phys. Rev. A 90 013809
[57] Li B, Özdemir Ş K, Xu X W, Zhang L, Kuang L M, and Jing H 2021 Phys. Rev. A 103 053522
[58] Sarma R, Ge L, Wiersig J, and Cao H 2015 Phys. Rev. Lett. 114 053903
[59] Zhang H L, Peng M Y, Xu X W, and Jing H 2022 Chin. Phys. B 31 014215
[60] Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, and Carmon T 2018 Nature 558 569
[61] Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037
[62] Jing H, Lü H, Özdemir S K, Carmon T, and Nori F 2018 Optica 5 1424
[63] Zhang H L, Huang R, Zhang S D, Li Y, Qiu C W, Nori F, and Jing H 2020 Nano Lett. 20 7594
[64] Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601
[65] Li B J, Huang R, Xu X W, Miranowicz A, and Jing H 2019 Photon. Res. 7 630
[66] Xu X W, Zhao Y J, Wang H, Jing H, and Chen A X 2020 Photon. Res. 8 143
[67] Xu X W, Li Y, Li B J, Jing H, and Chen A X 2020 Phys. Rev. Appl. 13 044070
[68] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M, and Jing H 2020 Phys. Rev. Lett. 125 143605
[69] Davuluri S and Zhu S 2015 Europhys. Lett. 112 64002
[70] Lü H, Jiang Y, Wang Y Z, and Jing H 2017 Photon. Res. 5 367
[71] Mirza I M, Ge W, and Jing H 2019 Opt. Express 27 25515
[72]Boyd R W 2008 Nonlinear Optics (New York: Academic Press)
[73] Malykin G B 2000 Phys. Usp. 43 1229
[74] Gardiner C W and Collett M J 1985 Phys. Rev. A 31 3761
[75] Adair R, Chase L L, and Payne S A 1989 Phys. Rev. B 39 3337
[76] Reimann R, Doderer M, Hebestreit E, Diehl R, Frimmer M, Windey D, Tebbenjohanns F, and Novotny L 2018 Phys. Rev. Lett. 121 033602
[77] Ahn J, Xu Z, Bang J, Deng Y H, Hoang T M, Han Q, Ma R M, and Li T 2018 Phys. Rev. Lett. 121 033603
[78] Maayani S, Martin L L, Kaminski S, and Carmon T 2016 Optica 3 552
[79] Sofikitis D, Bougas L, Katsoprinakis G E, Spiliotis A K, Loppinet B, and Rakitzis T P 2014 Nature 514 76
[80] Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80
[81] Ruesink F, Miri M A, Alù A, and Verhagen E 2016 Nat. Commun. 7 13662
Related articles from Frontiers Journals
[1] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 124202
[2] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 124202
[3] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 124202
[4] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 124202
[5] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 124202
[6] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 124202
[7] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 124202
[8] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 124202
[9] Jian-Feng Li, Yun-Fei Wang, Ke-Yu Su, Kai-Yu Liao, Shan-Chao Zhang, Hui Yan, Shi-Liang Zhu. Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage[J]. Chin. Phys. Lett., 2019, 36(7): 124202
[10] Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 124202
[11] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 124202
[12] Ya-Jing Jiang, Hao Lü, Hui Jing. Superradiance-Driven Phonon Laser[J]. Chin. Phys. Lett., 2018, 35(4): 124202
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 124202
[14] A. Asghari Nejad, H. R. Askari, H. R. Baghshahi. Bistability in a Hybrid Optomechanical System under the Effect of a Nonlinear Medium[J]. Chin. Phys. Lett., 2017, 34(8): 124202
[15] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 124202
Viewed
Full text


Abstract