Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 124201    DOI: 10.1088/0256-307X/39/12/124201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamic Nonreciprocity with a Kerr Nonlinear Resonator
Rui-Kai Pan1, Lei Tang1,2*, Keyu Xia1,3,4*, and Franco Nori5,6
1College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
3Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
4Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215000, China
5RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
6Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
Cite this article:   
Rui-Kai Pan, Lei Tang, Keyu Xia et al  2022 Chin. Phys. Lett. 39 124201
Download: PDF(5565KB)   PDF(mobile)(5571KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract On-chip optical nonreciprocal devices are vital components for integrated photonic systems and scalable quantum information processing. Nonlinear optical isolators and circulators have attracted considerable attention because of their fundamental interest and their important advantages in integrated photonic circuits. However, optical nonreciprocal devices based on Kerr or Kerr-like nonlinearity are subject to dynamical reciprocity when the forward and backward signals coexist simultaneously in a nonlinear system. Here, we theoretically propose a method for realizing on-chip nonlinear isolators and circulators with dynamic nonreciprocity. Dynamic nonreciprocity is achieved via the chiral modulation on the resonance frequency due to coexisting self- and cross-Kerr nonlinearities in an optical ring resonator. This work showing dynamic nonreciprocity with a Kerr nonlinear resonator can be an essential step toward integrated optical isolation.
Received: 14 October 2022      Express Letter Published: 17 November 2022
PACS:  42.65.-k (Nonlinear optics)  
  42.82.-m (Integrated optics)  
  11.30.Rd (Chiral symmetries)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/124201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/124201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui-Kai Pan
Lei Tang
Keyu Xia
and Franco Nori
[1] Cirac J I, Zoller P, Kimble H J, and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[2] Kimble H J 2008 Nature 453 1023
[3] Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, and Rempe G 2021 Science 371 614
[4] Li T, Miranowicz A, Hu X, Xia K, and Nori F 2018 Phys. Rev. A 97 062318
[5] Lai Y H, Suh M G, Lu Y K, Shen B, Yang Q F, Wang H, Li J, Lee S H, Yang K Y, and Vahala K 2020 Nat. Photon. 14 345
[6] Iwamura H, Hayashi S, and Iwasaki H 1978 Opt. Quantum Electron. 10 393
[7] Gauthier D J, Narum P, and Boyd R W 1986 Opt. Lett. 11 623
[8] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, and Hu C M 2019 Phys. Rev. Lett. 123 127202
[9] Ren Y L, Ma S L, Xie J K, Li X K, Cao M T, and Li F L 2022 Phys. Rev. A 105 013711
[10] Lira H, Yu Z, Fan S, and Lipson M 2012 Phys. Rev. Lett. 109 033901
[11] Estep N A, Sounas D L, Soric J, and Alù A 2014 Nat. Phys. 10 923
[12] Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, and Twamley J 2014 Phys. Rev. A 90 043802
[13] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903
[14] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, and Lodahl P 2015 Nat. Nanotechnol. 10 775
[15] Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J, and Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[16] Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577
[17] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, and Xiao M 2019 Phys. Rev. A 99 043833
[18] Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, and Xia K 2022 Phys. Rev. Lett. 128 203602
[19] Lu Y, Liao Z, Li F L, and Wang X H 2022 Photon. Res. 10 389
[20] Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448
[21] Bliokh K Y, Leykam D, Lein M, and Nori F 2019 Nat. Commun. 10 580
[22] Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, and Nori F 2016 Nat. Phys. 12 731
[23] Triolo C, Cacciola A, Patan$\rm {\grave{e}}$ S, Saija R, Savasta S, and Nori F 2017 ACS Photon. 4 2242
[24] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, and Zayats A V 2015 Nat. Photon. 9 796
[25] Bliokh K Y and Nori F 2015 Phys. Rep. 592 1
[26] Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, and Gong S Q 2018 Nat. Photon. 12 744
[27] Xia K Y, Nori F, and Xiao M 2018 Phys. Rev. Lett. 121 203602
[28] Lin G, Zhang S, Hu Y, Niu Y, Gong J, and Gong S 2019 Phys. Rev. Lett. 123 033902
[29] Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, and You L 2020 Phys. Rev. Lett. 125 123901
[30] Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H, Ye Y H, Wu H Z, Zhu Z H, Gao W, Guo G C, and Shi B S 2020 Phys. Rev. Res. 2 033517
[31] Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, and Nori F 2021 Sci. Adv. 7 eabe8924
[32] Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Gong J, Gong S, and Niu Y 2021 Phys. Rev. Appl. 16 014046
[33] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C, and Zou C L 2021 Nat. Commun. 12 2389
[34] Wu H, Ruan Y, Li Z, Dong M X, Cai M, Tang J, Tang L, Zhang H, Xiao M, and Xia K 2022 Laser Photon. Rev. 16 2100708
[35] Tang L, Tang J S, and Xia K 2022 Adv. Quantum Technol. 5 2200014
[36] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[37] Horsley S A R, Wu J H, Artoni M, and La R G C 2013 Phys. Rev. Lett. 110 223602
[38] Wu J H, Artoni M, and La R G C 2014 Phys. Rev. Lett. 113 123004
[39] Li B, Özdemir K, Xu X W, Zhang L, Kuang L M, and Jing H 2021 Phys. Rev. A 103 053522
[40] Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, and Carmon T 2018 Nature 558 569
[41] Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037
[42] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photon. 10 657
[43] Xu X W, Song L N, Zheng Q, Wang Z H, and Li Y 2018 Phys. Rev. A 98 063845
[44] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, and Liao J Q 2020 Phys. Rev. A 102 011502
[45] Ruesink F, Miri M A, Al$\rm {\grave{u}}$ A, and Verhagen E 2016 Nat. Commun. 7 13662
[46] Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80
[47] Xu H, Jiang L, Clerk A A, and Harris J G E 2019 Nature 568 65
[48] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovi$\rm {\acute{c}}$ M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R, and Renner H 2013 Nat. Photon. 7 579
[49] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, and Qi M 2012 Science 335 447
[50] Yu Y, Chen Y, Hu H, Xue W, Yvind K, and Mork J 2015 Laser & Photon. Rev. 9 241
[51] Yang K Y, Skarda J, Cotrufo M, Dutt A, Ahn G H, Sawaby M, Vercruysse D, Arbabian A, Fan S, Alù A, and Vučković J 2020 Nat. Photon. 14 369
[52] Tang L, Tang J, Wu H, Zhang J, Xiao M, and Xia K 2021 Photon. Res. 9 1218
[53] Shi Y, Yu Z, and Fan S 2015 Nat. Photon. 9 388
[54] Sounas D L and Alù A 2018 Phys. Rev. B 97 115431
[55] Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, and Zhang T 2019 Phys. Rev. Lett. 123 233604
[56] Peng B, Özdemir  K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394
[57] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, and Xiao M 2014 Nat. Photon. 8 524
[58] Del B L, Silver J M, Woodley M T M, Stebbings S L, Zhao X, and Del'Haye P 2018 Optica 5 279
[59] Woodley M T M, Silver J M, Hill L, Copie F, Del B L, Zhang S, Oppo G L, and Del'Haye P 2018 Phys. Rev. A 98 053863
[60] Wang J Q, Yang Y H, Li M, Hu X X, Surya J B, Xu X B, Dong C H, Guo G C, Tang H X, and Zou C L 2021 Phys. Rev. Lett. 126 133601
[61] Tang L, Tang J, Chen M, Nori F, Xiao M, and Xia K 2022 Phys. Rev. Lett. 128 083604
[62]Boyd R W 2008 Nonlinear Optics (New York: Academic Press)
[63] Xiao Y F, Özdemir  K, Gaddam V, Dong C H, Imoto N, and Yang L 2008 Opt. Express 16 21462
[64] Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, and Xiao Y F 2017 Phys. Rev. Lett. 118 033901
[65] Del B L, Silver J M, Stebbings S L, and Del'Haye P 2017 Sci. Rep. 7 43142
[66] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, and Koos C 2017 Nature 546 274
[67] Kutsaev S V, Krasnok A, Romanenko S N, Smirnov A Y, Taletski K, and Yakovlev V P 2021 Adv. Photon. Res. 2 2000104
[68]Taflove A and Hagness S C 2005 Computational Electrodynamics (Norwood: Artech House)
[69] Pintus P, Pasquale F D, and Bowers J E 2013 Opt. Express 21 5041
[70] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, and Mavalvala N 2008 Nat. Phys. 4 472
[71] Masoudi A and Newson T P 2017 Opt. Lett. 42 290
[72] Shin J, Liu Z, Bai W, Liu Y, Yan Y, Xue Y, Kandela I, Pezhouh M, MacEwan M R, Huang Y, Ray W Z, Zhou W, and Rogers J A 2019 Sci. Adv. 5 eaaw1899
[73] Zielińska J A and Mitchell M W 2017 Opt. Lett. 42 5298
[74] Tsang H K and Liu Y 2008 Semicond. Sci. Technol. 23 064007
[75] Guo X, Peng Z, Ding P, Li L, Chen X, Wei H, Tong Z, and Guo L 2021 Opt. Mater. Express 11 1080
[76] Wang H L, Wang D, Chen G D, and Liu H 2007 Chin. Phys. Lett. 24 2600
[77] Moody G, Chang L, Steiner T J, and Bowers J E 2020 AVS Quantum Sci. 2 041702
[78] Yang K Y, Oh D Y, Lee S H, Yang Q F, Yi X, Shen B, Wang H, and Vahala K 2018 Nat. Photon. 12 297
[79] Desiatov B, Shams-Ansari A, Zhang M, Wang C, and Lončar M 2019 Optica 6 380
[80] Zhang M, Wang C, Cheng R, Shams-Ansari A, and Lončar M 2017 Optica 4 1536
[81] Jiao Y F, Lu T X, and Jing H 2018 Phys. Rev. A 97 013843
[82] Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601
[83] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, and Kimble H J 2005 Phys. Rev. A 71 013817
[84] White A D, Ahm G H, Gasse K V et al. 2022 arXiv:2206.01173 [physics.optics]
Related articles from Frontiers Journals
[1] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 124201
[2] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 124201
[3] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 124201
[4] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 124201
[5] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 124201
[6] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 124201
[7] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 124201
[8] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 124201
[9] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 124201
[10] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 124201
[11] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 124201
[12] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 124201
[13] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 124201
[14] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 124201
[15] Wen-Jing Cheng, Guo Liang, Ping Wu, Tian-Qing Jia, Zhen-Rong Sun, Shi-An Zhang. Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency[J]. Chin. Phys. Lett., 2017, 34(8): 124201
Viewed
Full text


Abstract