Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 123402    DOI: 10.1088/0256-307X/39/12/123402
ATOMIC AND MOLECULAR PHYSICS |
Quantum Engineering of Helical Charge Migration in HCCI
ChunMei Liu1, Jörn Manz2,3,4*, Huihui Wang3,4, and Yonggang Yang3,4*
1Crystal Physics Research Center, College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
3State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
ChunMei Liu, Jörn Manz, Huihui Wang et al  2022 Chin. Phys. Lett. 39 123402
Download: PDF(3171KB)   PDF(mobile)(3859KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electronic charge of molecules can move on time scales when the nuclei stand practically still, from few hundreds of attoseconds to few femtoseconds. This ultrafast process is called “charge migration”. A typical consequence is rapid change of electronic dipole, which points to the center of charge. Corresponding linear (one-dimensional, 1D) and planar (2D) dipolar motions have already been well documented. Here we construct the first case of charge migration which causes chiral 3D dipolar motion, specifically along a helix about oriented iodo-acetylene (HCCI). Quantum dynamics simulations show that this can be induced by well-designed laser pulses.
Received: 11 October 2022      Editors' Suggestion Published: 22 November 2022
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  82.53.-k (Femtochemistry)  
  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/123402       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/123402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ChunMei Liu
Jörn Manz
Huihui Wang
and Yonggang Yang
[1]Eyring H, Walter J, and Kimball G E 1944 Quantum Chemistry (New York: Wiley) chap 11
[2] Cederbaum L S and Zobeley J 1999 Chem. Phys. Lett. 307 205
[3] Breidbach J and Cederbaum L S 2003 J. Chem. Phys. 118 3983
[4] Chelkowski S, Yudin G L, and Bandrauk A D 2006 J. Phys. B 39 S409
[5] Nest M, Remacle F, and Levine R D 2008 New J. Phys. 10 025019
[6] Bandrauk A D, Chelkowski S, Corkum P B, Manz J, and Yudin G L 2009 J. Phys. B 42 134001
[7] Kling M F, von den Hoff P, Znakovskaya I, and de Vivie-Riedle R 2013 Phys. Chem. Chem. Phys. 15 9448
[8] Kraus P M, Mignolet B, Baykusheva D et al. 2015 Science 350 790
[9] Diestler D, Hermann G, and Manz J 2017 J. Phys. Chem. A 121 5332
[10] Ding H, Jia D, Manz J, and Yang Y 2017 Mol. Phys. 115 1813
[11] Wörner H J, Arrell C A, Banerji N et al. 2017 Struct. Dyn. 4 061508
[12] Kraus P M and Wörner H J 2018 Angew. Chem. Int. Ed. 57 5228
[13] Jia D M, Manz J, and Yang Y G 2019 J. Phys. Chem. Lett. 10 4273
[14]Jia D, Manz J, Schild A, Svoboda V, and Yang Y 2020 From Nuclear Fluxes During Tunnelling to Electronic Fluxes During Charge Migration, in Tunnelling in Molecules: Nuclear Quantum Effects from Bio to Physical Chemistry, edited by Kästner J and Kozuch S, Theoretical and Computational Chemistry Series No. 18 (London: The Royal Society of Chemistry) chap 5 p 167
[15] Folorunso A S, Bruner A, Mauger F et al. 2021 Phys. Rev. Lett. 126 133002
[16] Weinkauf R, Schanen P, Yang D, Soukara S, and Schlag E W 1995 J. Phys. Chem. 99 11255
[17] Remacle F, Levine R D, Schlag E W, and Weinkauf R 1999 J. Phys. Chem. A 103 10149
[18] Kuleff A I, Lünnemann S, and Cederbaum L S 2013 Chem. Phys. 414 100
[19] Kuś T, Mignolet B, Levine R D, and Remacle F 2013 J. Phys. Chem. A 117 10513
[20] Barth I, Manz J, and Serrano-Andrés L 2008 Chem. Phys. 347 263
[21] Yuan K J, Shu C C, Dong D, and Bandrauk A D 2017 J. Phys. Chem. Lett. 8 2229
[22] Mineo H, Lin S H, and Fujimura Y 2014 Chem. Phys. 442 103
[23] Jia D M, Manz J, Paulus B, Pohl V, Tremblay J C, and Yang Y G 2017 Chem. Phys. 482 146
[24] Barth I and Manz J 2006 Angew. Chem. Int. Ed. 45 2962
[25] Barth I, Manz J, Shigeta Y, and Yagi K 2006 J. Am. Chem. Soc. 128 7043
[26]Barth I and Manz J 2010 Progress in Ultrafast Intense Laser Science VI (Berlin: Springer) vol 128 p 7043
[27] Kanno M, Kono H, and Fujimura Y 2006 Angew. Chem. Int. Ed. 45 7995
[28] Remacle F, Nest M, and Levine R D 2007 Phys. Rev. Lett. 99 183902
[29] Remacle F, Kienberger R, Krausz F, and Levine R D 2007 Chem. Phys. 338 342
[30] Kanno M, Hoki K, Kono H, and Fujimura Y 2007 J. Chem. Phys. 127 204314
[31] Kanno M, Kono H, Fujimura Y, and Lin S H 2010 Phys. Rev. Lett. 104 108302
[32] Mineo H, Lin S H, and Fujimura Y 2013 J. Chem. Phys. 138 074304
[33] Mineo H, Lin S H, Fujimura Y et al. 2013 J. Chem. Phys. 139 214306
[34] Yamaki M, Mineo H, Teranishi Y et al. 2014 J. Phys. Chem. Lett. 5 2044
[35] Yuan K J and Bandrauk A D 2015 Phys. Rev. A 92 063401
[36] Yamaki M, Teranishi Y, Nakamura H, Lin S H, and Fujimura Y 2016 Phys. Chem. Chem. Phys. 18 1570
[37] Yamaki M, Mineo H, Teranishi Y, Lin S H, and Fujimura Y 2016 J. Chin. Chem. Soc. 63 87
[38] Mineo H, Yamaki M, Kim G S, Teranishi Y, Lin S H, and Fujimura Y 2016 Phys. Chem. Chem. Phys. 18 26786
[39] Yuan K J, Guo J, and Bandrauk A D 2018 Phys. Rev. A 98 043410
[40] Despré V, Marciniak A, Loriot V et al. 2015 J. Phys. Chem. Lett. 6 426
[41] Lünnemann S, Kuleff A I, and Cederbaum L S 2008 Chem. Phys. Lett. 450 232
[42] Ren D, Wang S, Chen C et al. 2022 J. Phys. B 55 175101
[43] van den Wildenberg S, Mignolet B, Levine R D, and Remacle F 2019 J. Chem. Phys. 151 134310
[44] Wang H, Jiao Y, Zhao J, Xiao L, and Jia S 2022 Chin. Phys. Lett. 39 013401
[45] Vacher M, Steinberg L, Jenkins A J, Bearpark M J, and Robb1 M A 2015 Phys. Rev. A 92 040502(R)
[46] Despré V, Golubev N V, and Kuleff A I 2018 Phys. Rev. Lett. 121 203002
[47] Yuan K J, Chelkowski S, and Bandrauk A D 2013 J. Chem. Phys. 138 134316
[48] Yuan K J and Bandrauk A D 2016 J. Chem. Phys. 145 194304
[49] Yuan K J and Bandrauk A D 2017 Phys. Chem. Chem. Phys. 19 25846
[50] Yuan K J and Bandrauk A D 2019 Appl. Sci. 9 1941
[51] Hermann G, Pohl V, Dixit G, and Tremblay J C 2020 Phys. Rev. Lett. 124 013002
[52] Yu X, Zhang X, Hu X et al. 2022 Phys. Rev. Lett. 129 023001
Related articles from Frontiers Journals
[1] Yan-Wen Zhang, Gang Guo, Jian-Cheng Liu, Shu-Ting Shi, Ying-Can Qin, Li-Li Li, Lin-Feng He. Ion Photon Emission Microscope for Single Event Effect Testing in CIAE[J]. Chin. Phys. Lett., 2017, 34(7): 123402
[2] Xiao-Xun Mei, Xiao-Li Zhao, Long-Quan Xu, Ya-Wei Liu, Xu Kang, Shuai Yan, Dong-Dong Ni, Ke Yang, Lin-Fan Zhu. Investigation of Compton Profile of Molecular Propane[J]. Chin. Phys. Lett., 2016, 33(09): 123402
[3] LIU Hong, LI Min, XIE Xi-Guo, WU Cong, DENG Yong-Kai, WU Cheng-Yin, GONG Qi-Huang, LIU Yun-Quan. Charge Resonance Enhanced Multiple Ionization of H2O Molecules in Intense Laser Fields[J]. Chin. Phys. Lett., 2015, 32(06): 123402
[4] WANG Zhi-Ping ZHANG Feng-Shou, ZHU Yun, XIE Guan-Hao. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(7): 123402
[5] LIU Ya-Wei,WANG You-Yan,ZHU Lin-Fan**. Valence-Shell Excitations of Nitrous Oxide Studied by Fast Electron Impact[J]. Chin. Phys. Lett., 2012, 29(4): 123402
[6] WANG Zhi-Ping, BIAN Bao-An, WANG Li-Guang . Density-Functional-Theory Studies of C20 in Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(12): 123402
[7] ZHU Lin-Fan**, XU Wei-Qing, SUN Jian-Min***, ZHANG Wen-Yao . Optically Forbidden Transition of A'3Δu ← X3Σg-in Oxygen[J]. Chin. Phys. Lett., 2010, 27(11): 123402
[8] WANG Zhi-Ping, WANG Jing, ZHANG Feng-Shou,. Collision of Low Energy Proton with Ethylene[J]. Chin. Phys. Lett., 2010, 27(5): 123402
[9] WANG Zhi-Ping, WANG Jing, ZHANG Feng-Shou,. Excitation and Ionization of Ethylene by Charged Projectiles[J]. Chin. Phys. Lett., 2010, 27(1): 123402
[10] FENG Qiang, XU Yun-Feng, SUN Jin-Da, TIAN Shan-Xi, SHAN Xiao-Bin, LIU Fu-Yi, SHENG Liu-Si. Photodissociation Efficiency Spectroscopy Study of the Rydberg Excited Ion-Pair States of Carbon Dioxide[J]. Chin. Phys. Lett., 2009, 26(10): 123402
[11] FENG Qiang, TIAN Shan-Xi, ZHAO Yu-Jie, LIU Fu-Yi, SHAN Xiao-Bin, SHENG Liu-Si. Anion Mass Spectrometry Study of Ion-Pair Photodissociation of CO2 in the XUV Energy 19.70-22.24eV[J]. Chin. Phys. Lett., 2009, 26(5): 123402
[12] ZENG Si-Liang, LI Ping, FANG Quan-Yu, QIU Yu-Bo, LI Yue-Ming, YAN Jun, WANG Jian-Guo. Multi-Configuration Distorted-Wave Approximation in Electron-Impact Ionization of Ar6+[J]. Chin. Phys. Lett., 2005, 22(10): 123402
[13] FAN Xiao-Wei, GENG Zhen-Duo, ZHANG Yan-Song, K. T. Leung. Absolute Generalized Oscillator Strength Profile of Negative Ion Resonance at 8.9eV in C2F6[J]. Chin. Phys. Lett., 2005, 22(3): 123402
[14] LI Wen-Bin, ZHU Lin-Fan, LIU Xiao-Jing, YUAN Zhen-Sheng, SUN Jian-Min, CHENG Hua-Dong, XU Ke-Zun. Optical Oscillator Strengths of Hydrogen Bromide in the 4.5-20 eV Excitation Energy Region[J]. Chin. Phys. Lett., 2004, 21(4): 123402
[15] FAN Xiao-Wei, LIAO Tian-He, ZHANG Xian-Zhou, GAO Jin-Hui, WEI Jian-Yu, K. T. Leung. Absolute Generalized-Oscillator-Strength Measurement of C 1 s Preionization-Edge Electronic Excitations of C2F6 [J]. Chin. Phys. Lett., 2004, 21(3): 123402
Viewed
Full text


Abstract