ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Whispering Gallery Mode Lasing Performance's Evolution of Floating GaN Microdisks Varying with Their Thickness |
Gangyi Zhu1*, Mufei Tian1, M. Almokhtar2, Feifei Qin1, Binghui Li3, Mengyao Zhou1, Fei Gao1, Ying Yang1, Xin Ji1, Siqing He1, and Yongjin Wang1 |
1GaN Optoelectronic Integration International Cooperation Joint Laboratory of Jiangsu Province, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 2Physics Department, Assiut University, Assiut 71516, Egypt 3State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
|
|
Cite this article: |
Gangyi Zhu, Mufei Tian, M. Almokhtar et al 2022 Chin. Phys. Lett. 39 123401 |
|
|
Abstract Optical gain and loss of microcavity greatly affect the quality of lasing, how to improve optical gain and decrease optical loss is of great significance for the preparation of laser. In this study, four types standard microdisks with different thicknesses of 2.2 µm, 1.9 µm, 1.7 µm, and 1.45 µm were fabricated by micromachining technology process to modulate optical gain and loss of microdisk lasing. The whispering gallery mode lasing in the ultraviolet range of GaN microdisk devices was investigated for these devices in order to clarify the effect of microdisk thickness on device characteristics. The quality factor $Q$ and lasing mode number for different thicknesses are calculated from the stimulated spectra. The lifetimes of the exciton combination properties of the devices were observed using time-resolved PL spectroscopy. The lasing modes are modulated, and the lifetime decreases, while the $Q$ factor of the devices first increases and then decreases with decreasing thickness. All these results are induced by optical gain and loss competition.
|
|
Received: 29 September 2022
Published: 22 November 2022
|
|
|
|
|
|
[1] | Rodríguez-Fernández C, Almokhtar M, Ibarra-Hernández W, de Lima J M M, Romero A H, Asahi H, and Cantarero A S 2018 Nano Lett. 18 5091 |
[2] | Almokhtar M, Emura S, Zhou Y K, Hasegawa S, and Asahi H 2011 J. Phys.: Condens. Matter 23 325802 |
[3] | Li X, Zhu G, Gao X, Bai D, Huang X, Cao X, Zhu H, Hane K, and Wang Y 2015 IEEE Photon. J. 7 1 |
[4] | Vahala K J 2003 Nature 424 839 |
[5] | Kippenberg T J, Spillane S M, Min B, and Vahala K J 2004 IEEE J. Sel. Top. Quantum Electron. 10 1219 |
[6] | Zhi Y Y, Yu X C, Gong Q, Yang L, and Xiao Y F 2017 Adv. Mater. 29 1604920 |
[7] | Cao H, Zhao Y G, Ho S T, Seelig E W, and Wang Q H 1999 Phys. Rev. Lett. 82 2278 |
[8] | Redding B, Choma M A, and Cao H 2012 Nat. Photon. 6 355 |
[9] | Wiersma D S and Cavalieri S 2001 Nature 414 708 |
[10] | Wiersma D 2000 Nature 406 133 |
[11] | Biasco S, Beere H E, Ritchie D A, Li L, Davies A G, Linfield E H, and Vitiello M S 2019 Light Sci. Appl. 8 43 |
[12] | Woodward S L, Iannone P P, Reichmann K C, and Frigo N J 1998 IEEE Photon. Technol. Lett. 10 1337 |
[13] | Marcenac D D and Carroll J E 1993 IEEE Proc. J. Optoelectron. 140 157 |
[14] | Guo R, Jiang Y W, Liu T H, Liu Q, and Gong M L 2020 Chin. Phys. Lett. 37 044206 |
[15] | Savchenkov A A, Chiow S W, Ghasemkhani M, Williams S, Yu N, Stirbl R C, and Matsko A B 2019 Opt. Lett. 44 4175 |
[16] | Sandoghdar V, Treussart F, Hare J, Lefevre S V, Raimond J M, and Haroche S 1996 Phys. Rev. A 54 R1777 |
[17] | Liang W, Ilchenko V S, Savchenkov A A, Matsko A B, Seidel D, and Maleki L 2010 Opt. Lett. 35 2822 |
[18] | Wang Q J, Yan C, Yu N, Unterhinninghofen J, Wiersig J, Pflügl C, Diehl L, Edamura T, Yamanishi M, Kan H, and Capasso F 2010 Proc. Natl. Acad. Sci. USA 107 22407 |
[19] | Kawabe Y, Spiegelberg C, Schülzgen A, Nabor M F, Kippelen B, Mash E A, Allemand P M, Kuwata G M, Takeda K, and Peyghambarian N 1998 Appl. Phys. Lett. 72 141 |
[20] | Shopova S I, Farca G, Rosenberger A T, Wickramanayake W M S, and Kotov N A 2004 Appl. Phys. Lett. 85 6101 |
[21] | Wu Y and Leung P T 1999 Phys. Rev. A 60 630 |
[22] | Sprenger B, Schwefel H G L, and Wang L J 2009 Opt. Lett. 34 3370 |
[23] | Chiasera A, Dumeige Y, Feron P, Ferrari M, Jestin Y, Nunzi C G, Pelli S, Soria S, and Righini G C 2010 Laser Photon. Rev. 4 457 |
[24] | Dai J, Xu C X, Ding R, Zheng K, Shi Z L, Lv C G, and Cui Y P 2009 Appl. Phys. Lett. 95 191117 |
[25] | Zhu G P, Xu C X, Zhu J, Lv C G, and Cui Y P 2009 Appl. Phys. Lett. 94 051106 |
[26] | Peng Y Y, Lu J, Peng D, Ma W, Li F, Chen Q, Wang X, Sun J, Liu H, and Pan C 2019 Adv. Funct. Mater. 29 1905051 |
[27] | Ceppe J B, Féron P, Mortier M, and Dumeige Y 2019 Phys. Rev. Appl. 11 064028 |
[28] | Nesnidal M P, Mawst L J, Bhattacharya A, Botez D, DiMarco L, Connolly J C, and Abeles J H 1996 IEEE Photon. Technol. Lett. 8 182 |
[29] | Chen L and Towe E 2006 Appl. Phys. Lett. 89 053125 |
[30] | Wu X, Li H, Liu L, and Xu L 2008 Appl. Phys. Lett. 93 081105 |
[31] | Gorodetsky M L, Savchenkov A A, and Ilchenko V S 1996 Opt. Lett. 21 453 |
[32] | Barker J A S and Ilegems M 1973 Phys. Rev. B 7 743 |
[33] | Wang S J, Huang Y Z, Yang Y D, Lin J D, Che K J, Xiao J L, and Du Y 2010 J. Opt. Soc. Am. B. 27 719 |
[34] | Yang Y D and Huang Y Z 2007 IEEE J. Quantum Electron. 43 497 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|