Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 123201    DOI: 10.1088/0256-307X/39/12/123201
ATOMIC AND MOLECULAR PHYSICS |
Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization
Jing Zhao1, Jinlei Liu1, Xiaowei Wang1, Jianmin Yuan1,2, and Zengxiu Zhao1*
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Graduate School of China Academic of Engineering Physics, Beijing 100193, China
Cite this article:   
Jing Zhao, Jinlei Liu, Xiaowei Wang et al  2022 Chin. Phys. Lett. 39 123201
Download: PDF(2332KB)   PDF(mobile)(2337KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce and demonstrate a new approach to measure the electron-hole dynamics and coherence induced by strong-field ionization using hole-assisted high-harmonic spectroscopy. The coherent driving of the infrared and XUV pulses correlates the dynamics of the core-hole and the valence-hole by coupling multiple continua, which leads to the otherwise forbidden absorption and emission of high harmonics. An analytical model is developed based on the strong-field approximation by taking into account the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found to modulate strongly as functions of the time delay between the two pulses, suggesting that the coherent electron wave packets in multiple continua can be utilized to temporally resolve the core-valence transition in attoseconds.
Received: 20 October 2022      Express Letter Published: 30 November 2022
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/123201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/123201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Zhao
Jinlei Liu
Xiaowei Wang
Jianmin Yuan
and Zengxiu Zhao
[1] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, and Krausz F 2010 Nature 466 739
[2] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blattermann A, Hagstotz S, Ding T, Heck R, Madronero J, Martin F, and Pfeifer T 2014 Nature 516 374
[3] McFarland B K, Farrell J P, Miyabe S et al. 2014 Nat. Commun. 5 4235
[4] Young L, Kanter E P, Krässig B et al. 2010 Nature 466 56
[5] Erk B, Boll R, Trippel S et al. 2014 Science 345 288
[6] Schultze M, Fieß M, Karpowicz N et al. 2010 Science 328 1658
[7] Huang Y, Zhao J, Shu Z, Zhu Y, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, Chen J, and Zhao Z 2021 Ultrafast Sci. 2021 9837107
[8] Lépine F, Ivanov M Y, and Vrakking M J 2014 Nat. Photon. 8 195
[9] Sabbar M, Heuser S, Boge R, Lucchini M, Carette T, Lindroth E, Gallmann L, Cirelli C, and Keller U 2015 Phys. Rev. Lett. 115 133001
[10] Sabbar M, Timmers H, Chen Y J, Pymer A K, Loh Z H, Sayres S, Pabst S, Santra R, and Leone S R 2017 Nat. Phys. 13 472
[11] Leone S R, McCurdy C W, Burgdörfer J et al. 2014 Nat. Photon. 8 162
[12] Golubev N V and Kuleff A I 2015 Phys. Rev. A 91 051401
[13] Obara Y, Ito H, Ito T, Kurahashi N, Thürmer S, Tanaka H, Katayama T, Togashi T, Owada S, Yamamoto Y I, Karashima S, Nishitani J, Yabashi M, Suzuki T, and Misawa K 2017 Struct. Dyn. 4 044033
[14] Wörner H J, Arrell C A, Banerji N, Cannizzo A, Chergui M, Das A K, Hamm P, Keller U, Kraus P M, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser J E, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven J A, and Wenger O 2017 Struct. Dyn. 4 061508
[15] Rohringer N and Santra R 2009 Phys. Rev. A 79 053402
[16] Emma P, Akre R, Arthur J et al. 2010 Nat. Photon. 4 641
[17] Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P, and Rocca J J 2012 Nature 481 488
[18] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689
[19] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, and Krausz F 2001 Nature 414 509
[20] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, and Chang Z 2012 Opt. Lett. 37 3891
[21] Li Y, Gao C, Dong W, Zeng J, and Yuan J 2015 arXiv:1501.02660 [physics.atom-ph]
[22] Rackstraw D S, Ciricosta O, Vinko S M et al. 2015 Phys. Rev. Lett. 114 015003
[23] Fukuzawa H, Son S K, Motomura K et al. 2013 Phys. Rev. Lett. 110 173005
[24] Zhang B, Yuan J, and Zhao Z 2013 Phys. Rev. Lett. 111 163001
[25] Zhao Z X and Yuan J M 2014 Phys. Rev. A 89 023404
[26] Patchkovskii S, Zhao Z, Brabec T, and Villeneuve D M 2006 Phys. Rev. Lett. 97 123003
[27] Santra R and Gordon A 2006 Phys. Rev. Lett. 96 073906
[28] Pabst S and Santra R 2013 Phys. Rev. Lett. 111 233005
[29] Zhang B, Yuan J, and Zhao Z 2014 Phys. Rev. A 90 035402
[30] Leeuwenburgh J, Cooper B, Averbukh V, Marangos J P, and Ivanov M 2013 Phys. Rev. Lett. 111 123002
[31] Leeuwenburgh J, Cooper B, Averbukh V, Marangos J P, and Ivanov M 2014 Phys. Rev. A 90 033426
[32] Uzan A J, Soifer H, Pedatzur O, Clergerie A, Larroque S, Bruner B D, Pons B, Ivanov M, Smirnova O, and Dudovich N 2020 Nat. Photon. 14 188
[33] Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, and Chen J 2022 Phys. Rev. Lett. 128 183202
[34] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[35] Rapp J and Bauer D 2014 Phys. Rev. A 89 033401
[36] Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mevel E, Constant E, Patchkovskii S, Walters Z, Ivanov M Y, and Smirnova O 2010 Phys. Rev. Lett. 104 213601
[37] Cireasa R, Boguslavskiy A, Pons B et al. 2015 Nat. Phys. 11 654
[38] Zhao Z X and Lin C D 2005 Phys. Rev. A 71 060702
[39] Wickenhauser M, Burgdörfer J, Krausz F, and Drescher M 2005 Phys. Rev. Lett. 94 023002
[40] Zielinski A, Majety V P, Nagele S, Pazourek R, Burgdörfer J, and Scrinzi A 2015 Phys. Rev. Lett. 115 243001
Related articles from Frontiers Journals
[1] Yingbin Li, Lingling Qin, Aihua Liu, Ke Zhang, Qingbin Tang, Chunyang Zhai, Jingkun Xu, Shi Chen, Benhai Yu, and Jing Chen. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-Color Field[J]. Chin. Phys. Lett., 2022, 39(9): 123201
[2] Zhi-Lei Xiao, Wei Quan, Song-Po Xu, Shao-Gang Yu, Xuan-Yang Lai, Jing Chen, Xiao-Jun Liu. Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme[J]. Chin. Phys. Lett., 2020, 37(4): 123201
[3] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 123201
[4] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 123201
[5] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 123201
[6] Jian-Hong Chen, Song-Feng Zhao, Guo-Li Wang, Xiao-Ping Zheng, Zheng-Rong Zhang. Angle-Resolved Electron Spectra of F$^{-}$ Ions by Few-Cycle Laser Pulses[J]. Chin. Phys. Lett., 2017, 34(6): 123201
[7] M. Salehi, S. Mirzanejad. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma[J]. Chin. Phys. Lett., 2017, 34(5): 123201
[8] Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field[J]. Chin. Phys. Lett., 2017, 34(4): 123201
[9] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 123201
[10] Hong-Dan Zhang, Jing Guo, Yan Shi, Hui Du, Hai-Feng Liu, Xu-Ri Huang, Xue-Shen Liu, Jun Jing. Exploration of High-Harmonic Generation from the CS$_2$ Molecule by the Lewenstein Method in Two-Color Circularly Polarized Laser Field[J]. Chin. Phys. Lett., 2017, 34(1): 123201
[11] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 123201
[12] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 123201
[13] XIA Chang-Long, MIAO Xiang-Yang. Generation of Linear Isolated Sub-60 Attosecond Pulses by Combining a Circularly Polarized Pulse with an Elliptically Polarized Pulse[J]. Chin. Phys. Lett., 2015, 32(4): 123201
[14] WANG Chuan-Liang, SUN Ren-Ping, CHEN Yong-Ju, GONG Cheng, LAI Xuan-Yang, KANG Hui-Peng, QUAN Wei, LIU Xiao-Jun. Above-Threshold Ionization of Xenon by Chirped Intense Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(06): 123201
[15] CHENG Wen-Jing, ZHANG Shi-An, JIA Tian-Qing, FENG Dong-Hai, SUN Zhen-Rong. High-Resolution Selective Excitation of Resonance-Enhanced Multiphoton-Ionization Photoelectron Spectroscopy by Shaping Femtosecond Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(05): 123201
Viewed
Full text


Abstract