Chin. Phys. Lett.  2022, Vol. 39 Issue (12): 120502    DOI: 10.1088/0256-307X/39/12/120502
GENERAL |
Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition
Lingxiao Wang1,2, Yin Jiang3*, Lianyi He2*, and Kai Zhou1*
1Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
2State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
3Department of Physics, Beihang University, Beijing 100191, China
Cite this article:   
Lingxiao Wang, Yin Jiang, Lianyi He et al  2022 Chin. Phys. Lett. 39 120502
Download: PDF(1537KB)   PDF(mobile)(1737KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop deep autoregressive networks with multi channels to compute many-body systems with continuous spin degrees of freedom directly. As a concrete example, we demonstrate the two-dimensional XY model with the continuous-mixture networks and rediscover the Kosterlitz–Thouless (KT) phase transition on a periodic square lattice. Vortices characterizing the quasi-long range order are accurately detected by the generative model. By learning the microscopic probability distributions from the macroscopic thermal distribution, the networks are trained as an efficient physical sampler which can approximate the free energy and estimate thermodynamic observables unbiasedly with importance sampling. As a more precise evaluation, we compute the helicity modulus to determine the KT transition temperature. Although the training process becomes more time-consuming with larger lattice sizes, the training time remains unchanged around the KT transition temperature. The continuous-mixture autoregressive networks we developed thus can be potentially used to study other many-body systems with continuous degrees of freedom.
Received: 05 August 2022      Published: 02 December 2022
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.70.Fh (Phase transitions: general studies)  
  02.70.-c (Computational techniques; simulations)  
  05.70.-a (Thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/12/120502       OR      https://cpl.iphy.ac.cn/Y2022/V39/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lingxiao Wang
Yin Jiang
Lianyi He
and Kai Zhou
[1] Buchanan M 2019 Nat. Phys. 15 1208
[2] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[3] Wang L 2016 Phys. Rev. B 94 195105
[4] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[5] Pang L G, Zhou K, Su N, Petersen H, Stöcker H, and Wang X N 2018 Nat. Commun. 9 210
[6] Fujimoto Y, Fukushima K, and Murase K 2018 Phys. Rev. D 98 023019
[7] Fujimoto Y, Fukushima K, and Murase K 2020 Phys. Rev. D 101 054016
[8] Metodiev E M and Thaler J 2018 Phys. Rev. Lett. 120 241602
[9] Kasieczka G, Plehn T, Butter A, Cranmer K, Debnath D, Dillon B M, Fairbairn M, Faroughy D A, Fedorko W, Gay C, Gouskos L, F K J, Komiske P, Leiss S, Lister A, Macaluso S, Metodiev E, Moore L, Nachman B, Nordström K, Pearkes J, Qu H, Rath Y, Rieger M, Shih D, Thompson J, and Varma S 2019 SciPost Phys. 7 014
[10] Steinheimer J, Pang L G, Zhou K, Koch V, Randrup J, and Stoecker H 2019 J. High Energ. Phys. 2019(12) 122
[11] Jiang L J, Wang L X, and Zhou K 2021 Phys. Rev. D 103 116023
[12] Zhao Y S, Wang L, Zhou K, and Huang X G 2022 Phys. Rev. C 106 L051901
[13] Smith J S, Isayev O, and Roitberg A E 2017 Chem. Sci. 8 3192
[14] Carleo G and Troyer M 2017 Science 355 602
[15] Nagy A and Savona V 2019 Phys. Rev. Lett. 122 250501
[16] Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502
[17] Pfau D, Spencer J S, Matthews A G D G, and Foulkes W M C 2020 Phys. Rev. Res. 2 033429
[18] Vicentini F, Biella A, Regnault N, and Ciuti C 2019 Phys. Rev. Lett. 122 250503
[19] Yoshioka N and Hamazaki R 2019 Phys. Rev. B 99 214306
[20] Shen H T, Liu J W, and Fu L 2018 Phys. Rev. B 97 205140
[21] Mori Y, Kashiwa K, and Ohnishi A 2018 Prog. Theor. Exp. Phys. 2018
[22] Alexandru A, Bedaque P F, Lamm H, and Lawrence S 2017 Phys. Rev. D 96 094505
[23] Broecker P, Carrasquilla J, Melko R G, and Trebst S 2017 Sci. Rep. 7 8823
[24] Pawlowski J M and Urban J M 2020 Mach. Learn.: Sci. Technol. 1 045011
[25] Zhou K, EndrŐ G, Pang L G, and Stöcker H 2019 Phys. Rev. D 100 011501
[26] Wu D, Wang L, and Zhang P 2019 Phys. Rev. Lett. 122 080602
[27] Sharir O, Levine Y, Wies N, Carleo G, and Shashua A 2020 Phys. Rev. Lett. 124 020503
[28]Ou Z 2019 arXiv:1808.01630v4 [cs.LG]
[29] Cristoforetti M, Jurman G, Nardelli A I, and Furlanello C 2017 arXiv:1705.09524 [hep-lat]
[30]Thouless D J, Duncan F, Haldane M, and Kosterlitz J M 2016 Scientific Background: Topological Phase Transitions and Topological Phases of Matter, in The Nobel Prize in Physics, Advanced Information (The Royal Swedish Academy of Sciences)
[31] Wang C and Zhai H 2017 Phys. Rev. B 96 144432
[32] Beach M J S, Golubeva A, and Melko R G 2018 Phys. Rev. B 97 045207
[33] Suchsland P and Wessel S 2018 Phys. Rev. B 97 174435
[34] Zhang P, Shen H, and Zhai H 2018 Phys. Rev. Lett. 120 066401
[35] Carvalho D, García-Martínez N A, Lado J L, and Fernández-Rossier J 2018 Phys. Rev. B 97 115453
[36] Hu H Y, Li S H, Wang L, and You Y Z 2020 Phys. Rev. Res. 2 023369
[37] Fukushima K, Funai S S, and Iida H 2019 arXiv:1908.00281 [cs.LG]
[38] Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790
[39] Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401
[40] Gupta R, DeLapp J, Batrouni G G, Fox G C, Baillie C F, and Apostolakis J 1988 Phys. Rev. Lett. 61 1996
[41] Kosterlitz J M 1974 J. Phys. C: Solid State Phys. 7 1046
[42] Weber H and Minnhagen P 1988 Phys. Rev. B 37 5986
[43] Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86
[44] Blücher S, Kades L, Pawlowski J M, Strodthoff N, and Urban J M 2020 Phys. Rev. D 101 094507
[45] Nicoli K, Kessel P, Strodthoff N, Samek W, Müller K R, and Nakajima S 2019 arXiv:1903.11048 [cond-mat.stat-mech]
[46] Williams R J 1992 Mach. Learn. 8 229
[47]van den Oord A, Kalchbrenner N, and Kavukcuoglu K 2016 Proceedings of the 33rd International Conference on International Conference on Machine Learning vol 48 pp 1747–1756
[48]Germain M, Gregor K, Murray I, and Larochelle H 2015 Proceedings of the 32nd International Conference on Machine Learning vol 37 pp 881–889
[49] Chung S G 1999 Phys. Rev. B 60 11761
[50] Wagner H and Schollwoeck U 2010 Scholarpedia 5 9927
[51] Wehenkel A and Louppe G 2020 arXiv:2006.00866 [cs,stat]
[52] Salimans T, Karpathy A, Chen X, and Kingma D P 2017 arXiv:1701.05517 [cs,stat]
[53] Hasenbusch M 2005 J. Phys. A 38 5869
[54] Komura Y and Okabe Y 2012 J. Phys. Soc. Jpn. 81 113001
[55] Tobochnik J and Chester G V 1979 Phys. Rev. B 20 3761
[56] Teitel S and Jayaprakash C 1983 Phys. Rev. B 27 598
[57] Bighin G, Defenu N, Nándori I, Salasnich L, and Trombettoni A 2019 Phys. Rev. Lett. 123 100601
[58] Goodman J and Sokal A D 1989 Phys. Rev. D 40 2035
[59] Kusnezov D and Sloan J H 1993 Nucl. Phys. B 409 635
[60] Julku A, Peltonen T J, Liang L, Heikkilä T T, and Törmä P 2020 Phys. Rev. B 101 060505
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 120502
[2] Jin-Jie Li, Lian-Ren Wu, Jia-Yin Qi, Qi-Ming Sun. Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network[J]. Chin. Phys. Lett., 2017, 34(6): 120502
[3] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 120502
[4] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 120502
[5] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 120502
[6] JIA Li-Ping, Jasmina Tekić, DUAN Wen-Shan. Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice[J]. Chin. Phys. Lett., 2015, 32(4): 120502
[7] Hossam A. Ghany. Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation[J]. Chin. Phys. Lett., 2014, 31(06): 120502
[8] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 120502
[9] YAN Xin, WU Yang. Topological and Spectral Perturbations in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 120502
[10] XU Yan, HUANG Hai-Jun, and YONG Gui. Modified Static Floor Field and Exit Choice for Pedestrian Evacuation[J]. Chin. Phys. Lett., 2012, 29(8): 120502
[11] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 120502
[12] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 120502
[13] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 120502
[14] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 120502
[15] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 120502
Viewed
Full text


Abstract