FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems |
Shubin Wang1,2*, Guoli Ma3, Xin Zhang3, and Daiyin Zhu1* |
1College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2Flight College, Binzhou University, Binzhou 256603, China 3Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
|
|
Cite this article: |
Shubin Wang, Guoli Ma, Xin Zhang et al 2022 Chin. Phys. Lett. 39 114202 |
|
|
Abstract In optical systems, it is necessary to investigate the propagation of optical solitons in optical fiber systems for fiber-optic communications. By means of the bilinear method, we obtain the two-soliton solution of the variable coefficient higher-order coupled nonlinear Schrödinger equation. According to the obtained two-soliton solution, a novel two-soliton interaction structure of the system is constructed, and their interactions are studied. Two optical solitons occur with elastic interaction under certain conditions, and their amplitudes, shapes and velocities remain unchanged before and after the action. In addition to the elastic interaction, splitting action and polymerization also occur. The present study on the dynamic behavior of interaction of optical solitons may be valuable for research and applications in optical communication and other fields.
|
|
Received: 22 September 2022
Published: 24 October 2022
|
|
|
|
|
|
[1] | Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202 |
[2] | Wang L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 2613 |
[3] | Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202 |
[4] | Wang L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 629 |
[5] | Zhou Q 2022 Chin. Phys. Lett. 39 010501 |
[6] | Yan Y Y, Liu W J, Zhou Q, and Biswas A 2020 Nonlinear Dyn. 99 1313 |
[7] | Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201 |
[8] | Yu W T, Luan Z T, Zhang H X, and Liu W J 2022 Chaos, Solitons & Fractals 157 111816 |
[9] | Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501 |
[10] | Yu W T, Liu W J, and Zhang H X 2022 Chaos, Solitons & Fractals 159 112132 |
[11] | Zhang X M, Qin Y H, Ling L M, and Zhao L C 2021 Chin. Phys. Lett. 38 090201 |
[12] | Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932 |
[13] | Mou D S, Fang J J, Dai C Q, and Wang Y Y 2021 Optik 227 165396 |
[14] | Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, and Lei M 2017 Phys. Rev. E 96 042201 |
[15] | Yin K H, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201 |
[16] | Liu X Y, Zhang H X, and Liu W J 2022 Appl. Math. Modell. 102 305 |
[17] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 |
[18] | Ma G L, Zhou Q, Yu W T, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2509 |
[19] | Guan S W, Meng L Z, and Zhao L C 2022 Chin. Phys. B 31 080506 |
[20] | Ma G L, Zhao J B, Zhou Q, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2479 |
[21] | Zhao X, Wan R Y, Li W Y, Jin L, Zhang H, Li Y, Xu Y T, Shi L L, and Ma X H 2022 Chin. Phys. B 31 064215 |
[22] | Liu X Y, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2020 J. Adv. Res. 24 167 |
[23] | Pu J C, Li J, and Chen Y 2021 Chin. Phys. B 30 060202 |
[24] | Liu W J, Shi T, Liu M L, Wang Q, Liu X M, Zhou Q, Lei M, Lu P F, Yu L, and Wei Z Y 2021 Opt. Express 29 29402 |
[25] | Li L, Pang L H, Wang R F, Zhang X G, Hui Z Q, Han D D, Zhao F, and Liu W J 2022 Laser & Photon. Rev. 16 2100255 |
[26] | Liu M L, Wu H B, Liu X M, Wang Y R, Lei M, Liu W J, Guo W, and Wei Z Y 2021 Opto-Electron. Adv. 4 200029 |
[27] | Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, and Wei Z Y 2022 Appl. Phys. Lett. 120 053108 |
[28] | Yang C Y, Liu W J, Zhou Q, Mihalache D, and Malomed B A 2019 Nonlinear Dyn. 95 369 |
[29] | Yu W T, Zhou Q, Mirzazadeh M, Liu W J, and Biswas A 2019 J. Adv. Res. 15 69 |
[30] | Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501 |
[31] | Almeida V R, Barrios C A, Panepucci R R, and Lipson M 2004 Nature 431 1081 |
[32] | Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, and Leuthold J 2009 Nat. Photon. 3 216 |
[33] | Papadimitriou G I, Papazoglou C, and Pomportsis A S 2003 J. Lightwave Technol. 21 384 |
[34] | Shcherbakov M R, Vabishchevich P P, Shorokhov A S, Chong K E, Choi D Y, Staude I, Miroshnichenko A E, Neshev D N, Fedyanin A A, and Kivshar Y S 2015 Nano Lett. 15 6985 |
[35] | Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Bredas J L, Perry J W, and Marder S R 2010 Science 327 1485 |
[36] | Lu H, Liu X M, Wang L R, Gong Y K, and Mao D 2011 Opt. Express 19 2910 |
[37] | Suchkov S V, Sukhorukov A A, Huang J H, Dmitriev S V, Lee C H, and Kivshar Y S 2016 Laser & Photon. Rev. 10 177 |
[38] | Demircan A, Amiranashvili S, and Steinmeyer G 2011 Phys. Rev. Lett. 106 163901 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|