Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 114202    DOI: 10.1088/0256-307X/39/11/114202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems
Shubin Wang1,2*, Guoli Ma3, Xin Zhang3, and Daiyin Zhu1*
1College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2Flight College, Binzhou University, Binzhou 256603, China
3Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
Cite this article:   
Shubin Wang, Guoli Ma, Xin Zhang et al  2022 Chin. Phys. Lett. 39 114202
Download: PDF(8351KB)   PDF(mobile)(8427KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In optical systems, it is necessary to investigate the propagation of optical solitons in optical fiber systems for fiber-optic communications. By means of the bilinear method, we obtain the two-soliton solution of the variable coefficient higher-order coupled nonlinear Schrödinger equation. According to the obtained two-soliton solution, a novel two-soliton interaction structure of the system is constructed, and their interactions are studied. Two optical solitons occur with elastic interaction under certain conditions, and their amplitudes, shapes and velocities remain unchanged before and after the action. In addition to the elastic interaction, splitting action and polymerization also occur. The present study on the dynamic behavior of interaction of optical solitons may be valuable for research and applications in optical communication and other fields.
Received: 22 September 2022      Published: 24 October 2022
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/114202       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/114202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shubin Wang
Guoli Ma
Xin Zhang
and Daiyin Zhu
[1] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[2] Wang L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 2613
[3] Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202
[4] Wang L, Luan Z T, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2021 Nonlinear Dyn. 104 629
[5] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[6] Yan Y Y, Liu W J, Zhou Q, and Biswas A 2020 Nonlinear Dyn. 99 1313
[7] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[8] Yu W T, Luan Z T, Zhang H X, and Liu W J 2022 Chaos, Solitons & Fractals 157 111816
[9] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[10] Yu W T, Liu W J, and Zhang H X 2022 Chaos, Solitons & Fractals 159 112132
[11] Zhang X M, Qin Y H, Ling L M, and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[12] Chen S L, Wang L X, Wen L, Dai C Q, Liu J K, and Zhang X F 2021 Optik 247 167932
[13] Mou D S, Fang J J, Dai C Q, and Wang Y Y 2021 Optik 227 165396
[14] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J, and Lei M 2017 Phys. Rev. E 96 042201
[15] Yin K H, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201
[16] Liu X Y, Zhang H X, and Liu W J 2022 Appl. Math. Modell. 102 305
[17] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[18] Ma G L, Zhou Q, Yu W T, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2509
[19] Guan S W, Meng L Z, and Zhao L C 2022 Chin. Phys. B 31 080506
[20] Ma G L, Zhao J B, Zhou Q, Biswas A, and Liu W J 2021 Nonlinear Dyn. 106 2479
[21] Zhao X, Wan R Y, Li W Y, Jin L, Zhang H, Li Y, Xu Y T, Shi L L, and Ma X H 2022 Chin. Phys. B 31 064215
[22] Liu X Y, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2020 J. Adv. Res. 24 167
[23] Pu J C, Li J, and Chen Y 2021 Chin. Phys. B 30 060202
[24] Liu W J, Shi T, Liu M L, Wang Q, Liu X M, Zhou Q, Lei M, Lu P F, Yu L, and Wei Z Y 2021 Opt. Express 29 29402
[25] Li L, Pang L H, Wang R F, Zhang X G, Hui Z Q, Han D D, Zhao F, and Liu W J 2022 Laser & Photon. Rev. 16 2100255
[26] Liu M L, Wu H B, Liu X M, Wang Y R, Lei M, Liu W J, Guo W, and Wei Z Y 2021 Opto-Electron. Adv. 4 200029
[27] Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, and Wei Z Y 2022 Appl. Phys. Lett. 120 053108
[28] Yang C Y, Liu W J, Zhou Q, Mihalache D, and Malomed B A 2019 Nonlinear Dyn. 95 369
[29] Yu W T, Zhou Q, Mirzazadeh M, Liu W J, and Biswas A 2019 J. Adv. Res. 15 69
[30] Wang T Y, Zhou Q, and Liu W J 2022 Chin. Phys. B 31 020501
[31] Almeida V R, Barrios C A, Panepucci R R, and Lipson M 2004 Nature 431 1081
[32] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, and Leuthold J 2009 Nat. Photon. 3 216
[33] Papadimitriou G I, Papazoglou C, and Pomportsis A S 2003 J. Lightwave Technol. 21 384
[34] Shcherbakov M R, Vabishchevich P P, Shorokhov A S, Chong K E, Choi D Y, Staude I, Miroshnichenko A E, Neshev D N, Fedyanin A A, and Kivshar Y S 2015 Nano Lett. 15 6985
[35] Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Bredas J L, Perry J W, and Marder S R 2010 Science 327 1485
[36] Lu H, Liu X M, Wang L R, Gong Y K, and Mao D 2011 Opt. Express 19 2910
[37] Suchkov S V, Sukhorukov A A, Huang J H, Dmitriev S V, Lee C H, and Kivshar Y S 2016 Laser & Photon. Rev. 10 177
[38] Demircan A, Amiranashvili S, and Steinmeyer G 2011 Phys. Rev. Lett. 106 163901
Related articles from Frontiers Journals
[1] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 114202
[2] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 114202
[3] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 114202
[4] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 114202
[5] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 114202
[6] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 114202
[7] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 114202
[8] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 114202
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 114202
[10] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 114202
[11] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 114202
[12] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 114202
[13] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 114202
[14] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 114202
[15] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 114202
Viewed
Full text


Abstract