Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 114201    DOI: 10.1088/0256-307X/39/11/114201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Multiband Dynamics of Extended Harmonic Generation in Solids under Ultraviolet Injection
Yue Lang, Zhaoyang Peng, and Zengxiu Zhao*
Department of Physics, National University of Defense Technology, Changsha 410073, China
Cite this article:   
Yue Lang, Zhaoyang Peng, and Zengxiu Zhao 2022 Chin. Phys. Lett. 39 114201
Download: PDF(1640KB)   PDF(mobile)(1643KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using one-dimensional semiconductor Bloch equations, we investigate the multiband dynamics of electrons in a cutoff extension scheme employing an infrared pulse with additional UV injection. An extended three-step model is firstly validated to play a dominant role in emitting harmonics in the second plateau. Surprisingly, further analysis employing the acceleration theorem shows that, though harmonics in both the primary and secondary present positive and negative chirps, the positive (negative) chirp in the first region is related to the so-called short (long) trajectory, while that in the second region is emitted through ‘general’ trajectory, where electrons tunneling earlier and recombining earlier contribute significantly. The novel characteristics deepen the understanding of high harmonic generation in solids and may have great significance in attosecond science and reconstruction of band dispersion beyond the band edge.
Received: 15 September 2022      Editors' Suggestion Published: 14 October 2022
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/114201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/114201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue Lang
Zhaoyang Peng
and Zengxiu Zhao
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[3] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A, and Corkum P B 1994 Phys. Rev. A 49 2117
[4] Ferray M, L'Huillier A, Li X F, Lompre L A, Mainfray G, and Manus C 1988 J. Phys. B 21 L31
[5] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[6] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, and Agostini P 2001 Science 292 1689
[7] Hohenleutner M, Langer F, Schubert O, Knorr M, Huttner U, Koch S W, Kira M, and Huber R 2015 Nature 523 572
[8] Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Ališauskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, Hernández-García C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, and Kapteyn H C 2012 Science 336 1287
[9] Zhang B and Zhao Z X 2013 Chin. Phys. Lett. 30 023202
[10] Kienberger R, Hentschel M, Uiberacker M, Spielmann C, Kitzler M, Scrinzi A, Wieland M, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, and Krausz F 2002 Science 297 1144
[11] Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, and L'Huillier A 2011 Phys. Rev. Lett. 106 143002
[12] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, and Krausz F 2002 Nature 419 803
[13] Maquet A, Caillat J, and Taïeb R 2014 J. Phys. B 47 204004
[14] Midorikawa K 2022 Nat. Photon. 16 267
[15] Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, and Krausz F 2007 Nature 446 627
[16] Zhang D W, Lü Z H, Meng C, Du X Y, Zhou Z Y, Zhao Z X, and Yuan J M 2012 Phys. Rev. Lett. 109 243002
[17] Huang Y D, Meng C, Wang X W, Lü Z H, Zhang D W, Chen W B, Zhao J, Yuan J M, and Zhao Z X 2015 Phys. Rev. Lett. 115 123002
[18] Huang Y D, Zhao J, Shu Z, Zhu Y L, Liu J L, Dong W P, Wang X W, Lü Z H, Zhang D W, Yuan J M, Chen J, and Zhao Z X 2021 Ultrafast Sci. 2021 9837107
[19] Zhao Z X 2021 Chin. Sci. Bull. 66 913 (in Chinese)
[20] Dong W P, Hu H Y, and Zhao Z X 2020 Opt. Express 28 22490
[21] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, and Chang Z H 2017 Nat. Commun. 8 186
[22] Li J, Chew A, Hu S Y, White J, Ren X M, Han S, Yin Y C, Wang Y, Wu Y, and Chang Z H 2019 Opt. Express 27 30280
[23] Ren X M, Li J, Yin Y C, Zhao K, Chew A, Wang Y, Hu S Y, Cheng Y, Cunningham E, Wu Y, Chini M, and Chang Z H 2018 J. Opt. 20 023001
[24] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[25] Plaja L and Roso-Franco L 1992 Phys. Rev. B 45 8334
[26] Faisal F H M and Kamiński J Z 1997 Phys. Rev. A 56 748
[27] Liu L, Zhao J, Dong W P, Liu J L, Huang Y D, and Zhao Z X 2017 Phys. Rev. A 96 053403
[28] Liu L, Zhao J, Yuan J M, and Zhao Z X 2019 Chin. Phys. B 28 114205
[29] Goulielmakis E and Brabec T 2022 Nat. Photon. 16 411
[30] Yu C, Jiang S C, and Lu R F 2019 Adv. Phys.: X 4 1562982
[31] Jiang S C, Chen J G, Wei H, Yu C, Lu R F, and Lin C D 2018 Phys. Rev. Lett. 120 253201
[32] Ghimire S, Dichiara A D, Sistrunk E, Agostini P, Dimauro L F, and Reis D A 2011 Nat. Phys. 7 138
[33] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, and Corkum P B 2015 Nature 522 462
[34] Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, and Brabec T 2014 Phys. Rev. Lett. 113 73901
[35] Vampa G, Lu J, You Y S, Baykusheva D R, Wu M, Liu H, Schafer K J, Gaarde M B, Reis D A, and Ghimire S 2020 J. Phys. B 53 144003
[36] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, and Reis D A 2016 Nature 534 520
[37] Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, and Krausz F 2013 Nature 493 75
[38] Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth J V, Kienberger R, Ernstorfer R, Yakovlev V S, Stockman M I, and Krausz F 2013 Nature 493 70
[39] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, Klug D D, and Corkum P B 2015 Phys. Rev. Lett. 115 193603
[40] Yu C, Jiang S C, Wu T, Yuan G L, Wang Z W, Jin C, and Lu R F 2018 Phys. Rev. B 98 085439
[41] Lakhotia H, Kim H Y, Zhan M, Hu S, Meng S, and Goulielmakis E 2020 Nature 583 55
[42] Silva R E, Jiménez-Galán Á, Amorim B, Smirnova O, and Ivanov M 2019 Nat. Photon. 13 849
[43] Qian C, Yu C, Jiang S C, Zhang T, Gao J C, Shi S, Pi H Q, Weng H M, and Lu R F 2022 Phys. Rev. X 12 021030
[44] Shao C, Lu H T, Zhang X, Yu C, Tohyama T, and Lu R F 2022 Phys. Rev. Lett. 128 047401
[45] Nourbakhsh Z, Tancogne-Dejean N, Merdji H, and Rubio A 2021 Phys. Rev. Appl. 15 014013
[46] Liu X, Zhu X S, Lan P F, Zhang X F, Wang D, Zhang Q B, and Lu P X 2017 Phys. Rev. A 95 063419
[47] Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M, and Lu P X 2019 Phys. Rev. Lett. 122 193901
[48] Nefedova V E, Fröhlich S, Navarrete F, Tancogne-Dejean N, Franz D, Hamdou A, Kaassamani S, Gauthier D, Nicolas R, Jargot G, Hanna M, Georges P, Ciappina M F, Thumm U, Boutu W, and Merdji H 2021 Appl. Phys. Lett. 118 201103
[49] Yu C, Hansen K K, and Madsen L B 2019 Phys. Rev. A 99 013435
[50] Yu C, Jiang S C, Wu T, Yuan G L, Peng Y G, Jin C, and Lu R F 2020 Phys. Rev. B 102 241407
[51] Song X H, Yang S D, Zuo R X, Meier T, and Yang W F 2020 Phys. Rev. A 101 033410
[52] Navarrete F, Ciappina M F, and Thumm U 2019 Phys. Rev. A 100 033405
[53] Shao T J, Lü L J, Liu J Q, and Bian X B 2020 Phys. Rev. A 101 053421
[54] Uzan A J, Orenstein G, Á J G, McDonald C, Silva R E F, Bruner B D, Klimkin N D, Blanchet V, Arusi-Parpar T, Krüger M, Rubtsov A N, Smirnova O, Ivanov M, Yan B, Brabec T, and Dudovich N 2020 Nat. Photon. 14 183
[55] Sun N, Zhu X S, Li L, Lan P F, and Lu P X 2021 Phys. Rev. A 103 053111
[56]Lang Y, Peng Z Y, Liu J L, Zhao Z X, and Ghimire S 2022 Phys. Rev. Lett. (accepted)
[57] Yue L and Gaarde M B 2020 Phys. Rev. A 101 053411
[58] Yue L and Gaarde M B 2022 J. Opt. Soc. Am. B 39 535
[59] Földi P 2017 Phys. Rev. B 96 035112
[60] Peng Q F, Peng Z Y, Lang Y, Zhu Y L, Zhang D W, Lü Z H, and Zhao Z X 2022 Chin. Phys. Lett. 39 053301
[61] Lindefelt U, Nilsson H E, and Hjelm M 2004 Semicond. Sci. Technol. 19 1061
[62] Ghimire S and Reis D A 2019 Nat. Phys. 15 10
[63] Korbman M, Yu K S, and Yakovlev V S 2013 New J. Phys. 15 013006
Related articles from Frontiers Journals
[1] Jing Zhao, Jinlei Liu, Xiaowei Wang, Jianmin Yuan, and Zengxiu Zhao. Real-Time Observation of Electron-Hole Coherence Induced by Strong-Field Ionization[J]. Chin. Phys. Lett., 2022, 39(12): 114201
[2] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 114201
[3] Xiaoli Guo, Cheng Jin, Ziqiang He, Song-Feng Zhao, Xiao-Xin Zhou, and Ya Cheng. Retrieval of Angle-Dependent Strong-Field Ionization by Using High Harmonics Generated from Aligned N$_{2}$ Molecules[J]. Chin. Phys. Lett., 2021, 38(12): 114201
[4] Hongdan Zhang, Xiwang Liu, Facheng Jin, Ming Zhu, Shidong Yang, Wenhui Dong, Xiaohong Song, and Weifeng Yang. Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission[J]. Chin. Phys. Lett., 2021, 38(6): 114201
[5] Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm[J]. Chin. Phys. Lett., 2020, 37(12): 114201
[6] Fan Xiao , Xiaohui Fan , Li Wang , Dongwen Zhang , Jianhua Wu , Xiaowei Wang, and Zengxiu Zhao. Generation of Intense Sub-10 fs Pulses at 385 nm[J]. Chin. Phys. Lett., 2020, 37(11): 114201
[7] Jing-Jie Hao, Wei Tu, Nan Zong, Yu Shen, Shen-Jin Zhang, Yong Bo, Qin-Jun Peng, Zu-Yan Xu. Coaxial Multi-Wavelength Generation in YVO$_{4}$ Crystal with Stimulated Raman Scattering Excited by a Picosecond-Pulsed 1064 Laser[J]. Chin. Phys. Lett., 2020, 37(4): 114201
[8] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 114201
[9] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 114201
[10] Li Zhao, Zhi-Jing Chen, Hai-Bo Sang, Bai-Song Xie. Spatial Characteristics of Thomson Scattering Spectra in Laser and Magnetic Fields[J]. Chin. Phys. Lett., 2019, 36(7): 114201
[11] Jie Shao, Cai-Ping Zhang, Jing-Chao Jia, Jun-Lin Ma, Xiang-Yang Miao. Effect of Carrier Envelope Phase on High-Order Harmonic Generation from Solid[J]. Chin. Phys. Lett., 2019, 36(5): 114201
[12] Bin Zhang, Jian Zhao, Zeng-Xiu Zhao. Multi-Electron Effects in Attosecond Transient Absorption of CO Molecules[J]. Chin. Phys. Lett., 2018, 35(4): 114201
[13] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 114201
[14] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 114201
[15] Yang-Yang Liu, Kun Zhao, Peng He, Hang-Dong Huang, Hao Teng, Zhi-Yi Wei. High-Efficiency Generation of 0.12mJ, 8.6Fs Pulses at 400nm Based on Spectral Broadening in Solid Thin Plates[J]. Chin. Phys. Lett., 2017, 34(7): 114201
Viewed
Full text


Abstract