Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 113701    DOI: 10.1088/0256-307X/39/11/113701
ATOMIC AND MOLECULAR PHYSICS |
Nonresonant Multiphoton Ionization of Stark Decelerated Molecules by Femtosecond Laser Pulses
Congsen Meng1*, Zhihui Lü1, Xiaowei Wang1, Dongwen Zhang1, Zengxiu Zhao1, and Jianmin Yuan1,2
1Department of Physics, National University of Defense Technology, Changsha 410073, China
2Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing 100193, China
Cite this article:   
Congsen Meng, Zhihui Lü, Xiaowei Wang et al  2022 Chin. Phys. Lett. 39 113701
Download: PDF(2301KB)   PDF(mobile)(2303KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonresonant multiphoton ionization by femtosecond laser pulses can be applied to any molecule virtually, thereby greatly enhancing the scope of Stark decelerated molecules. For comparison, we detect decelerated and trapped ammonia molecules using two different schemes: (i) nonresonant multiphoton ionization using intense femtosecond (fs) pulses in the near infrared, and (ii) resonance-enhanced multiphoton ionization using nanosecond (ns) pulses from a tunable UV laser. The observed number of ions per shot for both schemes is similar. The fs laser detection scheme suffers from an increased background, which can be effectively eliminated by subsequent mass and velocity selection. To determine the detection volume of the ns laser detection scheme, we present measurements in which the decelerated ammonia molecules are bunched to a packet with a longitudinal spread well below $\sim$100 µm. It is concluded that the detection volume for the ns laser detection scheme is 1.5–2 times larger than that of the fs laser detection scheme.
Received: 17 August 2022      Published: 09 October 2022
PACS:  37.10.Pq (Trapping of molecules)  
  37.10.Mn (Slowing and cooling of molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/113701       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/113701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Congsen Meng
Zhihui Lü
Xiaowei Wang
Dongwen Zhang
Zengxiu Zhao
and Jianmin Yuan
[1] van de Meerakker S Y T, Bethlem H L, Vanhaecke N, and Meijer G 2012 Chem. Rev. 112 4828
[2] Bethlem H L, Berden G, van Roij A J A, Crompvoets F M H, and Meijer G 2000 Phys. Rev. Lett. 84 5744
[3] Cheng C, van der Poel A P P, Jansen P, Quintero-Pérez M, Wall T E, Ubachs W, and Bethlem H L 2016 Phys. Rev. Lett. 117 253201
[4] Wang Q, Hou S, Xu L, and Yin J 2016 Phys. Chem. Chem. Phys. 18 5432
[5] Du M, Zhang D, and Ding D 2021 Chin. Phys. Lett. 38 123201
[6] de Jongh T, Besemer M, Quan S, Karman T, van der Avoird A, Groenenboom G C, and van der Meerakker S 2020 Science 368 626
[7] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[8] Posthumus J 2004 Rep. Prog. Phys. 67 623
[9] Backus S, Durfee I C G, Murnane M M, and Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207
[10] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[11] Hankin S, Villeneuve D, Corkum P, and Rayner D 2001 Phys. Rev. A 64 013405
[12] Meng C, van der Poel A P P, Cheng C, and Bethlem H L 2015 Phys. Rev. A 92 023404
[13] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, and Meijer G 2002 Phys. Rev. A 65 053416
[14] Ashfold M, Langford S, Morgan R, Orr-Ewing A, Western C, Scheper C, and De Lange C 1998 Eur. Phys. J. D 4 189
[15] Quintero-Pérez M, Wall T E, Hoekstra S, and Bethlem H L 2014 J. Mol. Spectrosc. 300 112
[16] Quintero-Pérez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, and Bethlem H L 2013 Phys. Rev. Lett. 110 133003
[17] Jansen P, Quintero-Pérez M, Wall T E, van den Berg J E, Hoekstra S, and Bethlem H L 2013 Phys. Rev. A 88 043424
[18] Osterwalder A, Meek S A, Hammer G, Haak H, and Meijer G 2010 Phys. Rev. A 81 051401
[19] Meek S A, Parsons M F, Heyne G, Platschkowski V, Haak H, Meijer G, and Osterwalder A 2011 Rev. Sci. Instrum. 82 093108
[20] Eppink A T and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[21] Janssen M, Parker D H, Sitz G O, Stolte S, and Chandler D W 1991 J. Phys. Chem. 95 8007
[22] Quintero-Pérez M, Jansen P, and Bethlem H L 2012 Phys. Chem. Chem. Phys. 14 9630
[23] van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, and Meijer G 2004 Eur. Phys. J. D 31 337
[24] Bethlem H L, Kajita M, Sartakov B, Meijer G, and Ubachs W 2008 Eur. Phys. J. Spec. Top. 163 55
[25] Crompvoets F M H, Jongma R T, Bethlem H L, van Roij A J A, and Meijer G 2002 Phys. Rev. Lett. 89 093004
[26] Heiner C E, Bethlem H L, and Meijer G 2006 Phys. Chem. Chem. Phys. 8 2666
[27] Witte S, Zinkstok R T, Wolf A, Hogervorst W, Ubachs W, and Eikema K S 2006 Opt. Express 14 8168
[28] van Veldhoven J, Bethlem H L, and Meijer G 2005 Phys. Rev. Lett. 94 083001
Related articles from Frontiers Journals
[1] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 113701
[2] GONG Tian-Lin, HUANG Yun-Xia, MU Ren-Wang, JI Xian-Ming, YANG Xiao-Hua. Trapping, Transporting, and Splitting Cold Molecules Employing a Spatial Liquid Crystal Modulator[J]. Chin. Phys. Lett., 2013, 30(1): 113701
[3] XIA Yong,YIN Ya-Ling,JI Xiang,YIN Jian-Ping**. A Multistage Optical Stark Decelerator for use with a Pulsed Molecular Beam with an Electrostatic Storage Ring[J]. Chin. Phys. Lett., 2012, 29(5): 113701
Viewed
Full text


Abstract