ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Measuring Charge Distribution of Molecular Cations by an Atomic Coulomb Probe Microscope |
Xitao Yu1, Xiaoqing Hu2, Jiaqi Zhou3, Xinyu Zhang1, Xinning Zhao1, Shaokui Jia3, Xiaorui Xue3, Dianxiang Ren1, Xiaokai Li1, Yong Wu2, Xueguang Ren3, Sizuo Luo1*, and Dajun Ding1* |
1Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
|
|
Cite this article: |
Xitao Yu, Xiaoqing Hu, Jiaqi Zhou et al 2022 Chin. Phys. Lett. 39 113301 |
|
|
Abstract Imaging the charge distributions and structures of molecules and clusters will promote the understanding of the dynamics of the quantum system. Here, we report a method by using an Ar atom as a tip to probe the charge distributions of benzene (Bz) cations in gas phase. Remarkably, the measured charge distributions of Bz$^{+}$ ($\delta_{_{\scriptstyle \rm H}}=0.204$, $\delta_{_{\scriptstyle \rm C}}=-0.037$) and Bz$ ^{2+}$ ($\delta_{_{\scriptstyle \rm H}}=0.248$, $\delta_{_{\scriptstyle \rm C}}=0.0853$) agree well with the calculated Mulliken distributions, and the structures of Bz$_{2}$ is reconstructed by using the measured charge distributions. The structures of two Bz$_{2}$ isomers (T-shaped and PD isomers) can be resolved from the measured inter-molecular potential $V(R)$ between two Bz ions, and the structures of Bz dimer agree well with the theoretical predictions.
|
|
Received: 20 August 2022
Editors' Suggestion
Published: 19 October 2022
|
|
PACS: |
33.80.-h
|
|
|
33.80.Gj
|
(Diffuse spectra; predissociation, photodissociation)
|
|
34.20.Gj
|
(Intermolecular and atom-molecule potentials and forces)
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
|
|
|
[1] | Neutze R, Wouts R, van der Spoel D, Weckert E, and Hajdu J 2000 Nature 406 752 |
[2] | Ihee H, Lorenc M, Kim T K, Kong Q Y, Cammarata M, Lee J H, Bratos S, and Wulff M 2005 Science 309 1223 |
[3] | Gaffney K J and Chapman H N 2007 Science 316 1444 |
[4] | Gross L, Mohn F, Moll N, Liljeroth P, and Meyer G 2009 Science 325 1110 |
[5] | Parr R G 1983 Annu. Rev. Phys. Chem. 34 631 |
[6] | Geerlings P, De Proft F, and Langenaeker W 2003 Chem. Rev. 103 1793 |
[7] | Mulliken R S 1955 J. Chem. Phys. 23 1833 |
[8] | Mohn F, Gross L, Moll N, and Meyer G 2012 Nat. Nanotechnol. 7 227 |
[9] | Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L P H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schießer A, Berger R, and Schöffler M S 2013 Science 341 1096 |
[10] | Herwig P, Zawatzky K, Grieser M, Heber O, Jordon-Thaden B, Krantz C, Novotny O, Repnow R, Schurig V, Schwalm D, Vager Z, Wolf A, Trapp O, and Kreckel H 2013 Science 342 1084 |
[11] | Zhao X, Yu X, Xu X, Yin Z, Yu J, Li X, Ma P, Zhang D, Wang C, Luo S, and Ding D 2020 Phys. Rev. A 101 013416 |
[12] | Yu X, Zhao X, Wang Z, Yang Y, Zhang X, Ma P, Li X, Wang C, Xu X, Wang C, Zhang D, Luo S, and Ding D 2021 Phys. Rev. A 104 053104 |
[13] | Yu X, Liu Y, Deng K, Zhang X, Ma P, Li X, Wang C, Cui Z, Luo S, and Ding D 2022 Phys. Rev. A 105 063105 |
[14] | Kunitski M, Zeller S, Voigtsberger J, Kalinin A, Schmidt L P H, Schöffler M, Czasch A, Schöllkopf W, Grisenti R E, Jahnke T, Blume D, and Dörner R 2015 Science 348 551 |
[15] | Voigtsberger J, Zeller S, Becht J, Neumann N, Sturm F, Kim H K, Waitz M, Trinter F, Kunitski M, Kalinin A, Wu J, Schöllkopf W, Bressanini D, Czasch A, Williams J B, Ullmann-Pfleger K, Schmidt L P H, Schöffler M S, Grisenti R E, Jahnke T, and Dörner R 2014 Nat. Commun. 5 5765 |
[16] | Li X, Yu X, Ma P, Zhao X, Wang C, Luo S, and Ding D 2022 Chin. Phys. B (accepted) |
[17] | Zeller S, Kunitski M, Voigtsberger J, Waitz M, Trinter F, Eckart S, Kalinin A, Czasch A, Schmidt L P H, Weber T, Schöffler M, Jahnke T, and Dörner R 2018 Phys. Rev. Lett. 121 083002 |
[18] | Pickering J D, Shepperson B, Hübschmann B A K, Thorning F, and Stapelfeldt H 2018 Phys. Rev. Lett. 120 113202 |
[19] | Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, and Ding D 2022 Phys. Rev. Lett. 129 023001 |
[20] | Ulrich B, Vredenborg A, Malakzadeh A, Schmidt L P H, Havermeier T, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, and Dörner R 2011 J. Phys. Chem. A 115 6936 |
[21] | Wu C, Wu C, Song D, Su H, Xie X, Li M, Deng Y, Liu Y, and Gong Q 2014 J. Chem. Phys. 140 141101 |
[22] | Wu J, Kunitski M, Schmidt L P H, Jahnke T, and Dörner R 2012 J. Chem. Phys. 137 104308 |
[23] | Song P, Wang X, Meng C, Dong W, Li Y, Lv Z, Zhang D, Zhao Z, and Yuan J 2019 Phys. Rev. A 99 053427 |
[24] | Khan A, Jahnke T, Zeller S, Trinter F, Schöffler M, Schmidt L P H, Dörner R, and Kunitski M 2020 J. Phys. Chem. Lett. 11 2457 |
[25] | Burley S and Petsko G 1985 Science 229 23 |
[26] | Hunter C A and Sanders J K M 1990 J. Am. Chem. Soc. 112 5525 |
[27] | Sinnokrot M O, Valeev E F, and Sherrill C D 2002 J. Am. Chem. Soc. 124 10887 |
[28] | Schouder C A, Chatterley A S, Madsen L B, Jensen F, and Stapelfeldt H 2020 Phys. Rev. A 102 063125 |
[29] | Werner H J, Knowles P J, Knizia G et al. Molpro Quantum Chemistry Software, version 2010.1 see http://www.molpro.net |
[30] | Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, and Schmidt-Böcking H 2000 Phys. Rep. 330 95 |
[31] | Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, and Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463 |
[32] | See Supplemental Materials for more details about the experimental setup, the simulations, and additional data from experiments and the quantum chemistry calculations |
[33] | Luo S, Liu J, Li X, Zhang D, Yu X, Ren D, Li M, Yang Y, Wang Z, Ma P, Wang C, Zhao J, Zhao Z, and Ding D 2021 Phys. Rev. Lett. 126 103202 |
[34] | Capelo S B, Fernández B, Koch H, and Felker P M 2009 J. Phys. Chem. A 113 5212 |
[35] | Esteki K, Barclay A J, McKellar A R W, and Moazzen-Ahmadi N 2018 Chem. Phys. Lett. 713 65 |
[36] | Pfeiffer A N, Cirelli C, Smolarski M, Dörner R, and Keller U 2011 Nat. Phys. 7 428 |
[37] | Despré V, Marciniak A, Loriot V, Galbraith M C E, Rouzée A, Vrakking M J J, Lépine F, and Kuleff A I 2015 J. Phys. Chem. Lett. 6 426 |
[38] | Frisch M J 2010 Gaussian 09, Revision B01 (Gaussian Inc. Wallingford CT 2009) |
[39] | Ren X, Zhou J, Wang E, Yang T, Xu Z, Sisourat N, Pfeifer T, and Dorn A 2022 Nat. Chem. 14 232 |
[40] | Sinnokrot M O and Sherrill C D 2006 J. Phys. Chem. A 110 10656 |
[41] | Jha P C, Rinkevicius Z, Ågren H, Seal P, and Chakrabarti S 2008 Phys. Chem. Chem. Phys. 10 2715 |
[42] | Řezáč J and Hobza P 2008 J. Chem. Theory Comput. 4 1835 |
[43] | Ren X, Wang E, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062 |
[44] | Rudenko A, Inhester L, Hanasaki K, Li X, Robatjazi S J, Erk B, Boll R, Toyota K, Hao Y, Vendrell O, Bomme C, Savelyev E, Rudek B, Foucar L, Southworth S H, Lehmann C S, Kraessig B, Marchenko T, Simon M, Ueda K, Ferguson K R, Bucher M, Gorkhover T, Carron S, Alonso-Mori R, Koglin J E, Correa J, Williams G J, Boutet S, Young L, Bostedt C, Son S K, Santra R, and Rolles D 2017 Nature 546 129 |
[45] | Erk B, Boll R, Trippel S, Anielski D, Foucar L, Rudek B, SW E, Coffee R, Carron S, Schorb S, and KR F 2014 Science 345 288 |
[46] | Zhou J, Yu X, Luo S, Xue X, Jia S, Zhang X, Zhao Y, Hao X, He L, Wang C, Ding D, and Ren X 2022 Nat. Commun. 13 5335 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|