Chin. Phys. Lett.  2022, Vol. 39 Issue (11): 110301    DOI: 10.1088/0256-307X/39/11/110301
GENERAL |
Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements
Jian Li1,2,3†, Yang Zhou1,2,3†, and Qin Wang1,2,3*
1Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Key Lab of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3National Engineering Research Center of Telecommunication and Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Cite this article:   
Jian Li, Yang Zhou, and Qin Wang 2022 Chin. Phys. Lett. 39 110301
Download: PDF(3073KB)   PDF(mobile)(3077KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum correlation is a fundamental property that distinguishes quantum systems from classical ones, and is also a fragile resource under projective measurements. Recently, it has been shown that a subsystem in entangled pairs can share nonlocalities with multiple observers in sequence. Here we present a new steering scenario where both subsystems are accessible by multiple observers. Simulation results show that the two qubits in a singlet state can be simultaneously steered separately by two sequential observers.
Received: 31 August 2022      Published: 30 October 2022
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/11/110301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Li
Yang Zhou
and Qin Wang
[1] Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Uola R, Costa A C S, Nguyen H C, and Gühne O 2020 Rev. Mod. Phys. 92 015001
[3] Brunner N, Cavalcanti D, Pironio S, Scarani V, and Wehner S 2014 Rev. Mod. Phys. 86 419
[4] Wiseman H M, Jones S J, and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[5] Jones S J, Wiseman H M, and Doherty A C 2007 Phys. Rev. A 76 052116
[6] Šupić I, Hoban M J, Colomer L D, and Acín A 2020 New J. Phys. 22 073006
[7] Zhao Y Y, Ku H Y, Chen S L, Chen H B, Nori F, Xian G Y, Li C F, Guo G C, and Chen Y N 2020 npj Quantum Inf. 6 77
[8] Cavalcanti E G, Jones S J, Wiseman H M, and Reid M D 2009 Phys. Rev. A 80 032112
[9] Li J, Liu T J, Wang S, Jebarathinam C, and Wang Q 2019 Opt. Express 27 13559
[10] Cavalcanti D, Skrzypczyk P, Aguilar G H, Nery R V, Ribeiro P H S, and Walborn S P 2015 Nat. Commun. 6 7941
[11] Zhu J, Hu M J, Guo G C, Li C F, and Zhang Y S 2022 Phys. Rev. A 105 032211
[12] Ho J, Boston A, Palsson M, and Pryde G 2016 New J. Phys. 18 093026
[13] Wu S J 2013 Sci. Rep. 3 1193
[14] Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C, and Zhang Y S 2018 npj Quantum Inf. 4 63
[15] Silva R, Gisin N, Guryanova Y, and Popescu S 2015 Phys. Rev. Lett. 114 250401
[16] Shenoy A H, Designolle S, Hirsch F, Silva R, Gisin N, and Brunner N 2019 Phys. Rev. A 99 022317
[17] Choi Y, Hong S, Pramanik T, Lim H, Kim Y, Jung H, Han S, Moon S, and Cho Y 2020 Optica 7 675
[18] Cheng S M, Liu L J, and Hall M J W 2021 Phys. Rev. A 104 L060201
[19] Hirsch F, Quintino M T, Bowles J, and Brunner N 2013 Phys. Rev. Lett. 111 160402
[20] Wang Y, Li J, Wang X R, Liu T J, and Wang Q 2020 Opt. Express 28 13638
[21] Li J, Wang C Y, Liu T J, and Wang Q 2018 Phys. Rev. A 97 032107
[22] Händchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F, and Schnabel R 2012 Nat. Photon. 6 596
[23] Guerini L, Quintino M T, and Aolita L 2019 Phys. Rev. A 100 042308
[24] Saunders D J, Jones S J, Wiseman H M, and Pryde G J 2010 Nat. Phys. 6 845
[25] Sun K, Ye X J, Xiao Y, Xu X Y, Wu Y C, Xu J S, Chen J L, Li C F, and Guo G C 2018 npj Quantum Inf. 4 12
[26] Anwer H, Muhammad S, Cherifi W, Miklin N, Tavakoli A, and Bourennane M 2020 Phys. Rev. Lett. 125 080403
[27] Miklin N, Borkała J J, and Pawłowski M 2020 Phys. Rev. Res. 2 033014
[28] Wang Y K, Primaatmaja I W, Lavie E, Varvitsiotis A, and Lim C C W 2019 npj Quantum Inf. 5 17
Related articles from Frontiers Journals
[1] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[2] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 110301
[3] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 110301
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 110301
[5] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 110301
[6] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 110301
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 110301
[8] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 110301
[9] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 110301
[10] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 110301
[11] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 110301
[12] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 110301
[13] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 110301
[14] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 110301
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 110301
Viewed
Full text


Abstract