Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 107801    DOI: 10.1088/0256-307X/39/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Analytic S-Shaped Temperature Dependence of Peak Positions of the Localized-State Ensemble Luminescence and Application in the Analysis of Luminescence in Non- and Semi-Polar InGaN/GaN Quantum-Wells Micro-Array
Xiaorui Wang1 and Shijie Xu1,2*
1Department of Physics, and Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Pokfulam Road, Hong Kong, China
2Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
Cite this article:   
Xiaorui Wang and Shijie Xu 2022 Chin. Phys. Lett. 39 107801
Download: PDF(1697KB)   PDF(mobile)(1699KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two analytic expressions of temperature-dependent peak positions employing the localized-state ensemble (LSE) luminescence model are deduced for the cases of ${\Delta E=E_{\rm a}-E}_{0} >0$ and $ < 0$, respectively, under the first-order approximation of Taylor's expansion. Then, the deduced formulas are applied to examine the experimental variable-temperature photoluminescence data of non- and semi-polar InGaN/GaN quantum-wells (QWs) array by jointly considering the monotonic bandgap shrinking described by Pässler's empirical formula. S-shaped temperature dependence of luminescence peaks of both non- and semi-polar QWs is well reproduced with the analytic formulas. As a result, the localization depths are found to be 31.5 and 32.2 meV, respectively, for non- and semi-polar QWs.
Received: 01 August 2022      Published: 25 September 2022
PACS:  78.55.Hx (Other solid inorganic materials)  
  71.23.-k (Electronic structure of disordered solids)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
  78.67.De (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/107801       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaorui Wang and Shijie Xu
[1] Yoshida H, Yamashita Y, Kuwabara M, and Kan H 2008 Nat. Photon. 2 551
[2] Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, and Shelykh I A 2013 Nature 497 348
[3] Funato M, Kaneta A, Kawakami Y, Enya Y, Nishizuka K, Ueno M, and Nakamura T 2010 Appl. Phys. Express 3 021002
[4] Wang T, Liu Y H, Lee Y B, Ao J P, Bai J, and Sakai S 2002 Appl. Phys. Lett. 81 2508
[5] Zelewski S J, Urban J M, Surrente A, Maude D K, Kuc A, Schade L, Johnson R D, Dollmann M, Nayak P K, Snaith H J, and Radaelli P 2019 J. Mater. Chem. C 7 8350
[6] Cheche T O, Chang M C, and Lin S H 2005 Chem. Phys. 309 109
[7] Shi S L, Li G Q, Xu S J, Zhao Y, and Chen G H 2006 J. Phys. Chem. B 110 10475
[8] Wang X, Wang T, Yu D, and Xu S 2021 J. Appl. Phys. 130 205704
[9] Tiginyanu I M, Ursaki V V, Zalamai V V, Langa S, Hubbard S, Pavlidis D, and Föll H 2003 Appl. Phys. Lett. 83 1551
[10] Reshchikov M A, Huang D, Yun F, Visconti P, He L, Morkoç H, Jasinski J, Liliental-Weber Z, Molnar R J, Park S S, and Lee K Y 2003 J. Appl. Phys. 94 5623
[11] Wang K, Araki T, Yamaguchi T, Chen Y T, Yoon E, and Nanishi Y 2015 J. Cryst. Growth 430 93
[12] Zhang X T, Liu Y C, Zhi Z Z, Zhang J Y, Lu Y M, Shen D Z, Xu W, Fan X W, and Kong X G 2002 J. Lumin. 99 149
[13] Varshni Y P 1967 Physica 34 149
[14] Pässler R 1996 Phys. Status Solidi B 193 135
[15] Vina L, Logothetidis S, and Cardona M 1984 Phys. Rev. B 30 1979
[16] Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K K, and Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453
[17] Wang J, Dasari K, Cooper K, Thota V R, Wright J, Palai R, Ingram D C, Stinaff E A, Kaya S, and Jadwisienczak W M 2015 Phys. Status Solidi C 12 413
[18] Kuokstis E, Sun W H, Shatalov M, Yang J W, and Asif K M 2006 Appl. Phys. Lett. 88 261905
[19] Cho Y H, Gainer G H, Lam J B, Song J J, Yang W, and Jhe W 2000 Phys. Rev. B 61 7203
[20] Murotani H, Yamada Y, Taguchi T, Ishibashi A, Kawaguchi Y, and Yokogawa T 2008 J. Appl. Phys. 104 053514
[21] Eliseev P G, Perlin P, Lee J, and Osiński M 1997 Appl. Phys. Lett. 71 569
[22] Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M, and Yang H 2001 Appl. Phys. Lett. 79 1810
[23] Li Q, Xu S J, Xie M H, and Tong S Y 2005 Europhys. Lett. 71 994
[24] Li Q, Xu S J, Xie M H, and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853
[25] Arteev D S, Sakharov A V, Zavarin E E, Lundin W V, Rzheutski M V, Lutsenko E V, and Tsatsulnikov A F 2021 Semicond. Sci. Technol. 36 125007
[26] Hidouri T, Mal I, Samajdar D P, Saidi F, and Das T D 2019 Superlattices Microstruct. 129 252
[27] Klochikhin A, Reznitsky A, Don Dal B, Priller H, Kalt H, Klingshirn C, Permogorov S, and Ivanov S 2004 Phys. Rev. B 69 085308
[28] Wright A D, Milot R L, Eperon G E, Snaith H J, Johnston M B, and Herz L M 2017 Adv. Funct. Mater. 27 1700860
[29]Klingshirn C F 2007 Semiconductor Optics Third Edition (Springer-Verlag Berlin Heidelberg) p. 366
[30]Grundmann M 2010 The Physics of Semiconductors 2nd edn (Berlin: Springer-Verlag) p 431
[31] Xu Z Y, Lu Z D, Yuan Z L, Yang X P, Zheng B Z, Xu J Z, Ge W K, Wang Y, Wang J, and Chang L L 1998 Superlattices Microstruct. 23 381
[32] Hidouri T, Saidi F, Maaref H, Rodriguez P, and Auvray L 2016 Opt. Mater. 62 267
[33] Ezzedini M, Hidouri T, M A H H, Sayari A, Shalaan E, Chauvin N, Sfaxi L, Saidi F, Al-Ghamdi A, Bru-Chevallier C, and Maaref H 2017 Nanoscale Res. Lett. 12 450
[34] Arbia M B, Smiri B, Demir I, Saidi F, Altuntas I, Hassen F, and Maaref H 2022 Mater. Sci. Semicond. Process. 140 106411
[35] Bao W, Su Z, Zheng C, Ning J, and Xu S 2016 Sci. Rep. 6 34545
[36] Gong Y, Jiu L, Bruckbauer J, Bai J, Martin R W, and Wang T 2019 Sci. Rep. 9 986
[37] Jiu L, Gong Y, and Wang T 2018 Sci. Rep. 8 9898
[38] Xu S J, Li G Q, Xiong S J, and Che C M 2006 J. Appl. Phys. 99 073508
[39] Li Q, Xu S J, Xie M H, Tong S Y, Zhang X H, Liu W, and Chua S J 2002 Jpn. J. Appl. Phys. 41 L1093
[40] Xu S J, Liu W, and Li M F 2002 Appl. Phys. Lett. 81 2959
[41] Yu L M, Lu B Y, Yu P, Wang Y, Ding G J, Feng Q, Jiang Y, Chen H, Huang K, Hao Z B, Yu J D, Luo Y, Sun C Z, Xiong B, Han Y J, Wang J, Li H T, and Wang L 2022 Appl. Phys. Lett. 121 042106
Related articles from Frontiers Journals
[1] Bao-Quan Yao, He Li, Xiao-Lei Li, Yi Chen, Xiao-Ming Duan, Shuang Bai, Hong-Yu Yang, Zheng Cui, Ying-Jie Shen, Tong-Yu Dai. An Actively Mode-Locked Ho:YAG Solid-Laser Pumped by a Tm-Doped Fiber Laser[J]. Chin. Phys. Lett., 2016, 33(04): 107801
[2] XIE Guo-Bo. Luminescence and Energy Transfer in Europium and Bismuth Codoped Trisodium Yttrium Silicates[J]. Chin. Phys. Lett., 2013, 30(8): 107801
[3] TONG Fei, ZHU Zhi-Chao, LIU Bo, YI Ya-Sha, GU Mu, CHEN Hong. The Luminescence of a CuI Film Scintillator Controlled by a Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(2): 107801
[4] Muhamad Saipul Fakir, Zubair Ahmad Khaulah Sulaiman. Modification of Optical Band Gap and Surface Morphology of NiTsPc Thin Films[J]. Chin. Phys. Lett., 2012, 29(12): 107801
[5] KANG Feng-Wen, HU Yi-Hua**, WU Hao-Yi, JU Gui-Fang . Red Afterglow Properties of Eu3+ in CaMoO4 Phosphor[J]. Chin. Phys. Lett., 2011, 28(10): 107801
[6] ZHONG Hai-Yang, LUO Xi-Xian**, MA Lu-Bin, ZHANG Ming, XING Ming-Ming, FU Yao . Preparation of Gd2O2S:Yb,Ho Phosphor via Thermolysis of Sulfur−Contained (Gd,Yb,Ho)[S2CN(C4H8)]3 Phen Complexes[J]. Chin. Phys. Lett., 2011, 28(4): 107801
[7] CUI Zhao-Feng, YUAN Shuang-Long, **, YANG Yun-Xia, Franç, ois CHEVIRE **, Franck TESSIER, CHEN Guo-Rong . Preparation and Photoluminescence Properties of Eu2+−Doped Oxyapatite-Type SrxLa10−x (SiO4)6O3−x/2[J]. Chin. Phys. Lett., 2011, 28(1): 107801
[8] DAI Peng, XU Zou-Ming, WANG Yu-Xia** . Self-Trapped Exciton Photoluminescence from Polycrystalline K2AgI3 Obtained by Solid-State Reaction Method[J]. Chin. Phys. Lett., 2011, 28(1): 107801
[9] CHU Ming-Hui, JIANG Da-Peng, ZHAO Cheng-Jiu, LI Bin. Long-Lasting Phosphorescence Properties of Pyrochlore La2Ti2O7:Pr3+ Phosphor[J]. Chin. Phys. Lett., 2010, 27(4): 107801
[10] LEI Bing-Fu, YUE Song, ZHANG Yong-Zhe, LIU Ying-Liang. Luminescence Properties of Sr2SnO4:Sm3+ Afterglow Phosphor[J]. Chin. Phys. Lett., 2010, 27(3): 107801
[11] LI Hui-Liang, WANG Xiao-Jun, YUAN Jun-Lin, ZHAO Jing-Tai, YANG Xin-Xin, ZHANG Zhi-Jun, CHEN Hao-Hong, ZHANG Guo-Bin, SHI Chao-Shu. VUV/UV/X-Ray Excited Luminescent Properties of Eu3+ nd Pr3+ Doped BiSbO4[J]. Chin. Phys. Lett., 2008, 25(10): 107801
[12] YANG Hu-Cheng, LI Cheng-Yu, PANG Ran, G. Lakshminarayana, ZHOU Shi-Feng, TENG Yu, QIU Jian-Rong. Blue-to-Orange Tunable Luminescence from Europium Doped Yttrium--Silicon--Oxide--Nitride Phosphors[J]. Chin. Phys. Lett., 2008, 25(9): 107801
[13] CHEN Lei, JIANG Yang, ZHANG Guo-Bin, WU Can, YANG Guang-Tao, WANG Chun, LI Guo-Hua. Concentration and Temperature Dependences of YBO3:Bi3+ Luminescence under Vacuum Ultraviolet Excitation[J]. Chin. Phys. Lett., 2008, 25(5): 107801
[14] DING Dong-Zhou, LU Sheng, QIN Lai-Shun, REN Guo-Hao. Influence of Self-Absorption and Impurities on Scintillation Properties of (Lu0.1Y0.9)AlO3:Ce Single Crystals[J]. Chin. Phys. Lett., 2006, 23(9): 107801
[15] WU Xu-Feng, XU Chun-Xiang, ZHU Guang-Ping, LING Yi-Ming. ZnO Nanorods Produced by the Method of Arc Discharge[J]. Chin. Phys. Lett., 2006, 23(8): 107801
Viewed
Full text


Abstract